#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.DataAnalysis {
///
/// Represents a Gaussian process model.
///
[StorableClass]
[Item("StudentTProcessModel", "Represents a Student-t process posterior.")]
public sealed class StudentTProcessModel : NamedItem, IGaussianProcessModel {
[Storable]
private double negativeLogLikelihood;
public double NegativeLogLikelihood {
get { return negativeLogLikelihood; }
}
[Storable]
private double[] hyperparameterGradients;
public double[] HyperparameterGradients {
get {
var copy = new double[hyperparameterGradients.Length];
Array.Copy(hyperparameterGradients, copy, copy.Length);
return copy;
}
}
[Storable]
private ICovarianceFunction covarianceFunction;
public ICovarianceFunction CovarianceFunction {
get { return covarianceFunction; }
}
[Storable]
private IMeanFunction meanFunction;
public IMeanFunction MeanFunction {
get { return meanFunction; }
}
[Storable]
private string targetVariable;
public string TargetVariable {
get { return targetVariable; }
}
[Storable]
private string[] allowedInputVariables;
public string[] AllowedInputVariables {
get { return allowedInputVariables; }
}
[Storable]
private double[] alpha;
[Storable]
private double beta;
public double SigmaNoise {
get { return 0; }
}
[Storable]
private double[] meanParameter;
[Storable]
private double[] covarianceParameter;
[Storable]
private double nu;
private double[,] l; // used to be storable in previous versions (is calculated lazily now)
private double[,] x; // scaled training dataset, used to be storable in previous versions (is calculated lazily now)
// BackwardsCompatibility3.4
#region Backwards compatible code, remove with 3.5
[Storable(Name = "l")] // restore if available but don't store anymore
private double[,] l_storable {
set { this.l = value; }
get {
if (trainingDataset == null) return l; // this model has been created with an old version
else return null; // if the training dataset is available l should not be serialized
}
}
[Storable(Name = "x")] // restore if available but don't store anymore
private double[,] x_storable {
set { this.x = value; }
get {
if (trainingDataset == null) return x; // this model has been created with an old version
else return null; // if the training dataset is available x should not be serialized
}
}
#endregion
[Storable]
private IDataset trainingDataset; // it is better to store the original training dataset completely because this is more efficient in persistence
[Storable]
private int[] trainingRows;
[Storable]
private Scaling inputScaling;
[StorableConstructor]
private StudentTProcessModel(bool deserializing) : base(deserializing) { }
private StudentTProcessModel(StudentTProcessModel original, Cloner cloner)
: base(original, cloner) {
this.meanFunction = cloner.Clone(original.meanFunction);
this.covarianceFunction = cloner.Clone(original.covarianceFunction);
if (original.inputScaling != null)
this.inputScaling = cloner.Clone(original.inputScaling);
this.trainingDataset = cloner.Clone(original.trainingDataset);
this.negativeLogLikelihood = original.negativeLogLikelihood;
this.targetVariable = original.targetVariable;
if (original.meanParameter != null) {
this.meanParameter = (double[])original.meanParameter.Clone();
}
if (original.covarianceParameter != null) {
this.covarianceParameter = (double[])original.covarianceParameter.Clone();
}
nu = original.nu;
// shallow copies of arrays because they cannot be modified
this.trainingRows = original.trainingRows;
this.allowedInputVariables = original.allowedInputVariables;
this.alpha = original.alpha;
this.beta = original.beta;
this.l = original.l;
this.x = original.x;
}
public StudentTProcessModel(IDataset ds, string targetVariable, IEnumerable allowedInputVariables, IEnumerable rows,
IEnumerable hyp, IMeanFunction meanFunction, ICovarianceFunction covarianceFunction,
bool scaleInputs = true)
: base() {
this.name = ItemName;
this.description = ItemDescription;
this.meanFunction = (IMeanFunction)meanFunction.Clone();
this.covarianceFunction = (ICovarianceFunction)covarianceFunction.Clone();
this.targetVariable = targetVariable;
this.allowedInputVariables = allowedInputVariables.ToArray();
int nVariables = this.allowedInputVariables.Length;
meanParameter = hyp
.Take(this.meanFunction.GetNumberOfParameters(nVariables))
.ToArray();
covarianceParameter = hyp.Skip(meanParameter.Length)
.Take(this.covarianceFunction.GetNumberOfParameters(nVariables))
.ToArray();
nu = Math.Exp(hyp.Skip(meanParameter.Length + covarianceParameter.Length).First()) + 2; //TODO check gradient
try {
CalculateModel(ds, rows, scaleInputs);
} catch (alglib.alglibexception ae) {
// wrap exception so that calling code doesn't have to know about alglib implementation
throw new ArgumentException("There was a problem in the calculation of the Gaussian process model", ae);
}
}
private void CalculateModel(IDataset ds, IEnumerable rows, bool scaleInputs = true) {
this.trainingDataset = (IDataset)ds.Clone();
this.trainingRows = rows.ToArray();
this.inputScaling = scaleInputs ? new Scaling(ds, allowedInputVariables, rows) : null;
x = GetData(ds, this.allowedInputVariables, this.trainingRows, this.inputScaling);
IEnumerable y;
y = ds.GetDoubleValues(targetVariable, rows);
int n = x.GetLength(0);
// calculate cholesky decomposed (lower triangular) covariance matrix
var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, Enumerable.Range(0, x.GetLength(1)));
this.l = CalculateL(x, cov);
// calculate mean
var mean = meanFunction.GetParameterizedMeanFunction(meanParameter, Enumerable.Range(0, x.GetLength(1)));
double[] m = Enumerable.Range(0, x.GetLength(0))
.Select(r => mean.Mean(x, r))
.ToArray();
// calculate sum of diagonal elements for likelihood
double diagSum = Enumerable.Range(0, n).Select(i => Math.Log(l[i, i])).Sum();
// solve for alpha
double[] ym = y.Zip(m, (a, b) => a - b).ToArray();
int info;
alglib.densesolverreport denseSolveRep;
alglib.spdmatrixcholeskysolve(l, n, false, ym, out info, out denseSolveRep, out alpha);
beta = Util.ScalarProd(ym, alpha);
double sign0, sign1;
double lngamma0 = alglib.lngamma(0.5 * (nu + n), out sign0);
lngamma0 *= sign0;
double lngamma1 = alglib.lngamma(0.5 * nu, out sign1);
lngamma1 *= sign1;
negativeLogLikelihood =
0.5 * n * Math.Log((nu - 2) * Math.PI) +
diagSum +
-lngamma0 + lngamma1 +
//-Math.Log(alglib.gammafunction((n + nu) / 2) / alglib.gammafunction(nu / 2)) +
0.5 * (nu + n) * Math.Log(1 + beta / (nu - 2));
// derivatives
int nAllowedVariables = x.GetLength(1);
alglib.matinvreport matInvRep;
double[,] lCopy = new double[l.GetLength(0), l.GetLength(1)];
Array.Copy(l, lCopy, lCopy.Length);
alglib.spdmatrixcholeskyinverse(ref lCopy, n, false, out info, out matInvRep);
double c = (nu + n) / (nu + beta - 2);
if (info != 1) throw new ArgumentException("Can't invert matrix to calculate gradients.");
for (int i = 0; i < n; i++) {
for (int j = 0; j <= i; j++)
lCopy[i, j] = lCopy[i, j] - c * alpha[i] * alpha[j];
}
double[] meanGradients = new double[meanFunction.GetNumberOfParameters(nAllowedVariables)];
for (int k = 0; k < meanGradients.Length; k++) {
var meanGrad = Enumerable.Range(0, alpha.Length)
.Select(r => mean.Gradient(x, r, k));
meanGradients[k] = -Util.ScalarProd(meanGrad, alpha); //TODO not working yet, try to fix with gradient check
}
double[] covGradients = new double[covarianceFunction.GetNumberOfParameters(nAllowedVariables)];
if (covGradients.Length > 0) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
var g = cov.CovarianceGradient(x, i, j).ToArray();
for (int k = 0; k < covGradients.Length; k++) {
covGradients[k] += lCopy[i, j] * g[k];
}
}
var gDiag = cov.CovarianceGradient(x, i, i).ToArray();
for (int k = 0; k < covGradients.Length; k++) {
// diag
covGradients[k] += 0.5 * lCopy[i, i] * gDiag[k];
}
}
}
double nuGradient = 0.5 * n
- 0.5 * (nu - 2) * alglib.psi((n + nu) / 2) + 0.5 * (nu - 2) * alglib.psi(nu / 2)
+ 0.5 * (nu - 2) * Math.Log(1 + beta / (nu - 2)) - beta * (n + nu) / (2 * (beta + (nu - 2)));
//nuGradient = (nu-2) * nuGradient;
hyperparameterGradients =
meanGradients
.Concat(covGradients)
.Concat(new double[] { nuGradient }).ToArray();
}
private static double[,] GetData(IDataset ds, IEnumerable allowedInputs, IEnumerable rows, Scaling scaling) {
if (scaling != null) {
return AlglibUtil.PrepareAndScaleInputMatrix(ds, allowedInputs, rows, scaling);
} else {
return AlglibUtil.PrepareInputMatrix(ds, allowedInputs, rows);
}
}
private static double[,] CalculateL(double[,] x, ParameterizedCovarianceFunction cov) {
int n = x.GetLength(0);
var l = new double[n, n];
// calculate covariances
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
l[j, i] = cov.Covariance(x, i, j);
}
}
// cholesky decomposition
var res = alglib.trfac.spdmatrixcholesky(ref l, n, false);
if (!res) throw new ArgumentException("Matrix is not positive semidefinite");
return l;
}
public override IDeepCloneable Clone(Cloner cloner) {
return new StudentTProcessModel(this, cloner);
}
// is called by the solution creator to set all parameter values of the covariance and mean function
// to the optimized values (necessary to make the values visible in the GUI)
public void FixParameters() {
covarianceFunction.SetParameter(covarianceParameter);
meanFunction.SetParameter(meanParameter);
covarianceParameter = new double[0];
meanParameter = new double[0];
}
#region IRegressionModel Members
public IEnumerable GetEstimatedValues(IDataset dataset, IEnumerable rows) {
return GetEstimatedValuesHelper(dataset, rows);
}
public GaussianProcessRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
return new GaussianProcessRegressionSolution(this, new RegressionProblemData(problemData));
}
IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
return CreateRegressionSolution(problemData);
}
#endregion
private IEnumerable GetEstimatedValuesHelper(IDataset dataset, IEnumerable rows) {
try {
if (x == null) {
x = GetData(trainingDataset, allowedInputVariables, trainingRows, inputScaling);
}
int n = x.GetLength(0);
double[,] newX = GetData(dataset, allowedInputVariables, rows, inputScaling);
int newN = newX.GetLength(0);
var Ks = new double[newN, n];
var mean = meanFunction.GetParameterizedMeanFunction(meanParameter, Enumerable.Range(0, newX.GetLength(1)));
var ms = Enumerable.Range(0, newX.GetLength(0))
.Select(r => mean.Mean(newX, r))
.ToArray();
var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, Enumerable.Range(0, newX.GetLength(1)));
for (int i = 0; i < newN; i++) {
for (int j = 0; j < n; j++) {
Ks[i, j] = cov.CrossCovariance(x, newX, j, i);
}
}
return Enumerable.Range(0, newN)
.Select(i => ms[i] + Util.ScalarProd(Util.GetRow(Ks, i), alpha));
} catch (alglib.alglibexception ae) {
// wrap exception so that calling code doesn't have to know about alglib implementation
throw new ArgumentException("There was a problem in the calculation of the Gaussian process model", ae);
}
}
public IEnumerable GetEstimatedVariance(IDataset dataset, IEnumerable rows) {
try {
if (x == null) {
x = GetData(trainingDataset, allowedInputVariables, trainingRows, inputScaling);
}
int n = x.GetLength(0);
var newX = GetData(dataset, allowedInputVariables, rows, inputScaling);
int newN = newX.GetLength(0);
var kss = new double[newN];
double[,] sWKs = new double[n, newN];
var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, Enumerable.Range(0, x.GetLength(1)));
if (l == null) {
l = CalculateL(x, cov);
}
// for stddev
for (int i = 0; i < newN; i++)
kss[i] = cov.Covariance(newX, i, i);
for (int i = 0; i < newN; i++) {
for (int j = 0; j < n; j++) {
sWKs[j, i] = cov.CrossCovariance(x, newX, j, i) ;
}
}
// for stddev
alglib.ablas.rmatrixlefttrsm(n, newN, l, 0, 0, false, false, 0, ref sWKs, 0, 0);
for (int i = 0; i < newN; i++) {
var sumV = Util.ScalarProd(Util.GetCol(sWKs, i), Util.GetCol(sWKs, i));
kss[i] -= sumV;
kss[i] *= (nu + beta -2) / (nu + n - 2);
if (kss[i] < 0) kss[i] = 0;
}
return kss;
} catch (alglib.alglibexception ae) {
// wrap exception so that calling code doesn't have to know about alglib implementation
throw new ArgumentException("There was a problem in the calculation of the Gaussian process model", ae);
}
}
}
}