#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.Optimization.Operators;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Selection;
namespace HeuristicLab.Algorithms.ALPS {
///
/// An operator which represents the main loop of an offspring selection genetic algorithm.
///
[Item("AlpsOffspringSelectionGeneticAlgorithmMainOperator", "An operator that represents the core of an alps offspring selection genetic algorithm.")]
[StorableClass]
public sealed class AlpsOffspringSelectionGeneticAlgorithmMainOperator : AlgorithmOperator {
#region Parameter properties
public IValueLookupParameter RandomParameter {
get { return (IValueLookupParameter)Parameters["Random"]; }
}
public IValueLookupParameter EvaluatorParameter {
get { return (IValueLookupParameter)Parameters["Evaluator"]; }
}
public ILookupParameter EvaluatedSolutionsParameter {
get { return (ILookupParameter)Parameters["EvaluatedSolutions"]; }
}
public IScopeTreeLookupParameter QualityParameter {
get { return (IScopeTreeLookupParameter)Parameters["Quality"]; }
}
public IValueLookupParameter MaximizationParameter {
get { return (IValueLookupParameter)Parameters["Maximization"]; }
}
public ILookupParameter PopulationSizeParameter {
get { return (ILookupParameter)Parameters["PopulationSize"]; }
}
public IValueLookupParameter SelectorParameter {
get { return (IValueLookupParameter)Parameters["Selector"]; }
}
public IValueLookupParameter CrossoverParameter {
get { return (IValueLookupParameter)Parameters["Crossover"]; }
}
public IValueLookupParameter MutatorParameter {
get { return (IValueLookupParameter)Parameters["Mutator"]; }
}
public IValueLookupParameter MutationProbabilityParameter {
get { return (IValueLookupParameter)Parameters["MutationProbability"]; }
}
public IValueLookupParameter ElitesParameter {
get { return (IValueLookupParameter)Parameters["Elites"]; }
}
public IValueLookupParameter ReevaluateElitesParameter {
get { return (IValueLookupParameter)Parameters["ReevaluateElites"]; }
}
public ILookupParameter ComparisonFactorParameter {
get { return (ILookupParameter)Parameters["ComparisonFactor"]; }
}
public ILookupParameter CurrentSuccessRatioParameter {
get { return (ILookupParameter)Parameters["CurrentSuccessRatio"]; }
}
public IValueLookupParameter SuccessRatioParameter {
get { return (IValueLookupParameter)Parameters["SuccessRatio"]; }
}
public ILookupParameter SelectionPressureParameter {
get { return (ILookupParameter)Parameters["SelectionPressure"]; }
}
public IValueLookupParameter MaximumSelectionPressureParameter {
get { return (IValueLookupParameter)Parameters["MaximumSelectionPressure"]; }
}
public IValueLookupParameter OffspringSelectionBeforeMutationParameter {
get { return (IValueLookupParameter)Parameters["OffspringSelectionBeforeMutation"]; }
}
public IValueLookupParameter FillPopulationWithParentsParameter {
get { return (IValueLookupParameter)Parameters["FillPopulationWithParents"]; }
}
public IScopeTreeLookupParameter AgeParameter {
get { return (IScopeTreeLookupParameter)Parameters["Age"]; }
}
public IValueLookupParameter AgeInheritanceParameter {
get { return (IValueLookupParameter)Parameters["AgeInheritance"]; }
}
public IValueLookupParameter AgeIncrementParameter {
get { return (IValueLookupParameter)Parameters["AgeIncrement"]; }
}
#endregion
[StorableConstructor]
private AlpsOffspringSelectionGeneticAlgorithmMainOperator(bool deserializing) : base(deserializing) { }
private AlpsOffspringSelectionGeneticAlgorithmMainOperator(AlpsOffspringSelectionGeneticAlgorithmMainOperator original, Cloner cloner)
: base(original, cloner) {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new AlpsOffspringSelectionGeneticAlgorithmMainOperator(this, cloner);
}
public AlpsOffspringSelectionGeneticAlgorithmMainOperator()
: base() {
Initialize();
}
private void Initialize() {
Parameters.Add(new ValueLookupParameter("Random", "A pseudo random number generator."));
Parameters.Add(new ValueLookupParameter("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
Parameters.Add(new LookupParameter("EvaluatedSolutions", "The number of evaluated solutions."));
Parameters.Add(new ScopeTreeLookupParameter("Quality", "The value which represents the quality of a solution."));
Parameters.Add(new ValueLookupParameter("Maximization", "True if the problem is a maximization problem, otherwise false."));
Parameters.Add(new ValueLookupParameter("PopulationSize", "The size of the population of solutions in each layer."));
Parameters.Add(new ValueLookupParameter("Selector", "The operator used to select solutions for reproduction."));
Parameters.Add(new ValueLookupParameter("Crossover", "The operator used to cross solutions."));
Parameters.Add(new ValueLookupParameter("Mutator", "The operator used to mutate solutions."));
Parameters.Add(new ValueLookupParameter("MutationProbability", "The probability that the mutation operator is applied on a solution."));
Parameters.Add(new ValueLookupParameter("Elites", "The numer of elite solutions which are kept in each generation."));
Parameters.Add(new ValueLookupParameter("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
Parameters.Add(new LookupParameter("ComparisonFactor", "The comparison factor is used to determine whether the offspring should be compared to the better parent, the worse parent or a quality value linearly interpolated between them. It is in the range [0;1]."));
Parameters.Add(new LookupParameter("CurrentSuccessRatio", "The current success ratio."));
Parameters.Add(new ValueLookupParameter("SuccessRatio", "The ratio of successful to total children that should be achieved."));
Parameters.Add(new LookupParameter("SelectionPressure", "The actual selection pressure."));
Parameters.Add(new ValueLookupParameter("MaximumSelectionPressure", "The maximum selection pressure that terminates the algorithm."));
Parameters.Add(new ValueLookupParameter("OffspringSelectionBeforeMutation", "True if the offspring selection step should be applied before mutation, false if it should be applied after mutation."));
Parameters.Add(new ValueLookupParameter("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded."));
Parameters.Add(new ScopeTreeLookupParameter("Age", "The age of individuals."));
Parameters.Add(new ValueLookupParameter("AgeInheritance", "A weight that determines the age of a child after crossover based on the older (1.0) and younger (0.0) parent."));
Parameters.Add(new ValueLookupParameter("AgeIncrement", "The value the age the individuals is incremented if they survives a generation."));
var selector = new Placeholder();
var subScopesProcessor1 = new SubScopesProcessor();
var childrenCreator = new ChildrenCreator();
var osBeforeMutationBranch = new ConditionalBranch();
var uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
var crossover1 = new Placeholder();
var uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
var evaluator1 = new Placeholder();
var subScopesCounter1 = new SubScopesCounter();
var qualityComparer1 = new WeightedParentsQualityComparator();
var ageCalculator1 = new WeightingReducer() { Name = "Calculate Age" };
var subScopesRemover1 = new SubScopesRemover();
var uniformSubScopesProcessor3 = new UniformSubScopesProcessor();
var mutationBranch1 = new StochasticBranch();
var mutator1 = new Placeholder();
var variableCreator1 = new VariableCreator();
var variableCreator2 = new VariableCreator();
var conditionalSelector = new ConditionalSelector();
var subScopesProcessor2 = new SubScopesProcessor();
var uniformSubScopesProcessor4 = new UniformSubScopesProcessor();
var evaluator2 = new Placeholder();
var subScopesCounter2 = new SubScopesCounter();
var mergingReducer1 = new MergingReducer();
var uniformSubScopesProcessor5 = new UniformSubScopesProcessor();
var crossover2 = new Placeholder();
var mutationBranch2 = new StochasticBranch();
var mutator2 = new Placeholder();
var uniformSubScopesProcessor6 = new UniformSubScopesProcessor();
var evaluator3 = new Placeholder();
var subScopesCounter3 = new SubScopesCounter();
var qualityComparer2 = new WeightedParentsQualityComparator();
var ageCalculator2 = new WeightingReducer() { Name = "Calculate Age" };
var subScopesRemover2 = new SubScopesRemover();
var offspringSelector = new AlpsOffspringSelector();
var subScopesProcessor3 = new SubScopesProcessor();
var bestSelector = new BestSelector();
var worstSelector = new WorstSelector();
var rightReducer = new RightReducer();
var leftReducer = new LeftReducer();
var mergingReducer2 = new MergingReducer();
var reevaluateElitesBranch = new ConditionalBranch();
var uniformSubScopesProcessor7 = new UniformSubScopesProcessor();
var evaluator4 = new Placeholder();
var subScopesCounter4 = new SubScopesCounter();
var incrementAgeProcessor = new UniformSubScopesProcessor();
var ageIncrementor = new DoubleCounter() { Name = "Increment Age" };
OperatorGraph.InitialOperator = selector;
selector.Name = "Selector (placeholder)";
selector.OperatorParameter.ActualName = SelectorParameter.Name;
selector.Successor = subScopesProcessor1;
subScopesProcessor1.Operators.Add(new EmptyOperator());
subScopesProcessor1.Operators.Add(childrenCreator);
subScopesProcessor1.Successor = offspringSelector;
childrenCreator.ParentsPerChild = new IntValue(2);
childrenCreator.Successor = osBeforeMutationBranch;
osBeforeMutationBranch.Name = "Apply OS before mutation?";
osBeforeMutationBranch.ConditionParameter.ActualName = OffspringSelectionBeforeMutationParameter.Name;
osBeforeMutationBranch.TrueBranch = uniformSubScopesProcessor1;
osBeforeMutationBranch.FalseBranch = uniformSubScopesProcessor5;
osBeforeMutationBranch.Successor = null;
uniformSubScopesProcessor1.Operator = crossover1;
uniformSubScopesProcessor1.Successor = uniformSubScopesProcessor2;
crossover1.Name = "Crossover (placeholder)";
crossover1.OperatorParameter.ActualName = CrossoverParameter.Name;
crossover1.Successor = null;
uniformSubScopesProcessor2.Parallel.Value = true;
uniformSubScopesProcessor2.Operator = evaluator1;
uniformSubScopesProcessor2.Successor = subScopesCounter1;
evaluator1.Name = "Evaluator (placeholder)";
evaluator1.OperatorParameter.ActualName = EvaluatorParameter.Name;
evaluator1.Successor = qualityComparer1;
subScopesCounter1.Name = "Increment EvaluatedSolutions";
subScopesCounter1.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
subScopesCounter1.Successor = uniformSubScopesProcessor3;
uniformSubScopesProcessor3.Operator = mutationBranch1;
uniformSubScopesProcessor3.Successor = conditionalSelector;
qualityComparer1.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
qualityComparer1.LeftSideParameter.ActualName = QualityParameter.Name;
qualityComparer1.MaximizationParameter.ActualName = MaximizationParameter.Name;
qualityComparer1.RightSideParameter.ActualName = QualityParameter.Name;
qualityComparer1.ResultParameter.ActualName = "SuccessfulOffspring";
qualityComparer1.Successor = ageCalculator1;
ageCalculator1.ParameterToReduce.ActualName = AgeParameter.Name;
ageCalculator1.TargetParameter.ActualName = AgeParameter.Name;
ageCalculator1.WeightParameter.ActualName = AgeInheritanceParameter.Name;
ageCalculator1.Successor = subScopesRemover1;
subScopesRemover1.RemoveAllSubScopes = true;
subScopesRemover1.Successor = null;
mutationBranch1.ProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
mutationBranch1.RandomParameter.ActualName = RandomParameter.Name;
mutationBranch1.FirstBranch = mutator1;
mutationBranch1.SecondBranch = variableCreator2;
mutationBranch1.Successor = null;
mutator1.Name = "Mutator (placeholder)";
mutator1.OperatorParameter.ActualName = MutatorParameter.Name;
mutator1.Successor = variableCreator1;
variableCreator1.Name = "MutatedOffspring = true";
variableCreator1.CollectedValues.Add(new ValueParameter("MutatedOffspring", null, new BoolValue(true), false));
variableCreator1.Successor = null;
variableCreator2.Name = "MutatedOffspring = false";
variableCreator2.CollectedValues.Add(new ValueParameter("MutatedOffspring", null, new BoolValue(false), false));
variableCreator2.Successor = null;
conditionalSelector.ConditionParameter.ActualName = "MutatedOffspring";
conditionalSelector.ConditionParameter.Depth = 1;
conditionalSelector.CopySelected.Value = false;
conditionalSelector.Successor = subScopesProcessor2;
subScopesProcessor2.Operators.Add(new EmptyOperator());
subScopesProcessor2.Operators.Add(uniformSubScopesProcessor4);
subScopesProcessor2.Successor = mergingReducer1;
mergingReducer1.Successor = null;
uniformSubScopesProcessor4.Parallel.Value = true;
uniformSubScopesProcessor4.Operator = evaluator2;
uniformSubScopesProcessor4.Successor = subScopesCounter2;
evaluator2.Name = "Evaluator (placeholder)";
evaluator2.OperatorParameter.ActualName = EvaluatorParameter.Name;
evaluator2.Successor = null;
subScopesCounter2.Name = "Increment EvaluatedSolutions";
subScopesCounter2.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
subScopesCounter2.Successor = null;
uniformSubScopesProcessor5.Operator = crossover2;
uniformSubScopesProcessor5.Successor = uniformSubScopesProcessor6;
crossover2.Name = "Crossover (placeholder)";
crossover2.OperatorParameter.ActualName = CrossoverParameter.Name;
crossover2.Successor = mutationBranch2;
mutationBranch2.ProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
mutationBranch2.RandomParameter.ActualName = RandomParameter.Name;
mutationBranch2.FirstBranch = mutator2;
mutationBranch2.SecondBranch = null;
mutationBranch2.Successor = null;
mutator2.Name = "Mutator (placeholder)";
mutator2.OperatorParameter.ActualName = MutatorParameter.Name;
mutator2.Successor = null;
uniformSubScopesProcessor6.Parallel.Value = true;
uniformSubScopesProcessor6.Operator = evaluator3;
uniformSubScopesProcessor6.Successor = subScopesCounter3;
evaluator3.Name = "Evaluator (placeholder)";
evaluator3.OperatorParameter.ActualName = EvaluatorParameter.Name;
evaluator3.Successor = qualityComparer2;
subScopesCounter3.Name = "Increment EvaluatedSolutions";
subScopesCounter3.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
qualityComparer2.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
qualityComparer2.LeftSideParameter.ActualName = QualityParameter.Name;
qualityComparer2.MaximizationParameter.ActualName = MaximizationParameter.Name;
qualityComparer2.RightSideParameter.ActualName = QualityParameter.Name;
qualityComparer2.ResultParameter.ActualName = "SuccessfulOffspring";
qualityComparer2.Successor = ageCalculator2;
ageCalculator2.ParameterToReduce.ActualName = AgeParameter.Name;
ageCalculator2.TargetParameter.ActualName = AgeParameter.Name;
ageCalculator2.WeightParameter.ActualName = AgeInheritanceParameter.Name;
ageCalculator2.Successor = subScopesRemover2;
subScopesRemover2.RemoveAllSubScopes = true;
subScopesRemover2.Successor = null;
subScopesCounter3.Successor = null;
offspringSelector.CurrentSuccessRatioParameter.ActualName = CurrentSuccessRatioParameter.Name;
offspringSelector.MaximumSelectionPressureParameter.ActualName = MaximumSelectionPressureParameter.Name;
offspringSelector.SelectionPressureParameter.ActualName = SelectionPressureParameter.Name;
offspringSelector.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name;
offspringSelector.OffspringPopulationParameter.ActualName = "OffspringPopulation";
offspringSelector.OffspringPopulationWinnersParameter.ActualName = "OffspringPopulationWinners";
offspringSelector.SuccessfulOffspringParameter.ActualName = "SuccessfulOffspring";
offspringSelector.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name;
offspringSelector.PopulationSizeParameter.ActualName = PopulationSizeParameter.Name;
offspringSelector.OffspringCreator = selector;
offspringSelector.Successor = subScopesProcessor3;
subScopesProcessor3.Operators.Add(bestSelector);
subScopesProcessor3.Operators.Add(worstSelector);
subScopesProcessor3.Successor = mergingReducer2;
bestSelector.CopySelected = new BoolValue(false);
bestSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
bestSelector.NumberOfSelectedSubScopesParameter.ActualName = ElitesParameter.Name;
bestSelector.QualityParameter.ActualName = QualityParameter.Name;
bestSelector.Successor = rightReducer;
rightReducer.Successor = reevaluateElitesBranch;
reevaluateElitesBranch.ConditionParameter.ActualName = "ReevaluateElites";
reevaluateElitesBranch.Name = "Reevaluate elites ?";
reevaluateElitesBranch.TrueBranch = uniformSubScopesProcessor7;
reevaluateElitesBranch.FalseBranch = null;
reevaluateElitesBranch.Successor = null;
uniformSubScopesProcessor7.Parallel.Value = true;
uniformSubScopesProcessor7.Operator = evaluator4;
uniformSubScopesProcessor7.Successor = subScopesCounter4;
evaluator4.Name = "Evaluator (placeholder)";
evaluator4.OperatorParameter.ActualName = EvaluatorParameter.Name;
subScopesCounter4.Name = "Increment EvaluatedSolutions";
subScopesCounter4.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
subScopesCounter4.Successor = null;
worstSelector.CopySelected = new BoolValue(false);
worstSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
worstSelector.NumberOfSelectedSubScopesParameter.ActualName = ElitesParameter.Name;
worstSelector.QualityParameter.ActualName = QualityParameter.Name;
worstSelector.Successor = leftReducer;
leftReducer.Successor = null;
mergingReducer2.Successor = incrementAgeProcessor;
incrementAgeProcessor.Operator = ageIncrementor;
incrementAgeProcessor.Successor = null;
ageIncrementor.ValueParameter.ActualName = AgeParameter.Name;
ageIncrementor.IncrementParameter.Value = null;
ageIncrementor.IncrementParameter.ActualName = AgeIncrementParameter.Name;
ageIncrementor.Successor = null;
}
public override IOperation Apply() {
if (CrossoverParameter.ActualValue == null)
return null;
return base.Apply();
}
}
}