#region License Information /* HeuristicLab * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HeuristicLab.Core; using HeuristicLab.Encodings.PermutationEncoding; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Data; using System.Collections.Generic; namespace HeuristicLab.Problems.VehicleRouting.Encodings.Zhu { [Item("ZhuHeuristicCrossover2", "The Zhu Heuristic Crossover (Version 2). It is implemented as described in Zhu, K.Q. (2000). A New Genetic Algorithm For VRPTW. Proceedings of the International Conference on Artificial Intelligence.")] [StorableClass] public sealed class ZhuHeuristicCrossover2 : ZhuCrossover { [StorableConstructor] private ZhuHeuristicCrossover2(bool deserializing) : base(deserializing) { } public ZhuHeuristicCrossover2() : base() { } protected override ZhuEncoding Crossover(IRandom random, ZhuEncoding parent1, ZhuEncoding parent2) { List p1 = new List(parent1); List p2 = new List(parent2); ZhuEncoding child = parent2.Clone() as ZhuEncoding; int breakPoint = random.Next(child.Length); int i = breakPoint; int predecessor = breakPoint - 1; if (predecessor < 0) predecessor = predecessor + child.Length; int parent1Index = i; int parent2Index = i; while (i != predecessor) { if (i == breakPoint) { child[i] = p1[parent1Index]; p1.Remove(child[i]); if (parent1Index >= p1.Count) parent1Index = 0; p2.Remove(child[i]); if (parent2Index >= p2.Count) parent2Index = 0; } if (ProblemInstance.GetDistance( child[i] + 1, p1[parent1Index] + 1) < ProblemInstance.GetDistance( child[i] + 1, p2[parent2Index] + 1)) { child[(i + 1) % child.Length] = p1[parent1Index]; } else { child[(i + 1) % child.Length] = p2[parent2Index]; } p1.Remove(child[(i + 1) % child.Length]); if (parent1Index >= p1.Count) parent1Index = 0; p2.Remove(child[(i + 1) % child.Length]); if (parent2Index >= p2.Count) parent2Index = 0; i = (i + 1) % child.Length; } return child; } } }