[4379] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Core;
|
---|
| 23 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
| 24 | using HeuristicLab.Parameters;
|
---|
| 25 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
[4752] | 27 | using HeuristicLab.Common;
|
---|
[4379] | 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.VehicleRouting.Encodings.Zhu {
|
---|
| 30 | [Item("ZhuHeuristicCrossover1", "The Zhu Heuristic Crossover (Version 1). It is implemented as described in Zhu, K.Q. (2000). A New Genetic Algorithm For VRPTW. Proceedings of the International Conference on Artificial Intelligence.")]
|
---|
| 31 | [StorableClass]
|
---|
| 32 | public sealed class ZhuHeuristicCrossover1 : ZhuCrossover {
|
---|
| 33 | [StorableConstructor]
|
---|
| 34 | private ZhuHeuristicCrossover1(bool deserializing) : base(deserializing) { }
|
---|
| 35 |
|
---|
| 36 | public ZhuHeuristicCrossover1()
|
---|
| 37 | : base() {
|
---|
| 38 | }
|
---|
| 39 |
|
---|
[4752] | 40 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 41 | return new ZhuHeuristicCrossover1(this, cloner);
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | private ZhuHeuristicCrossover1(ZhuHeuristicCrossover1 original, Cloner cloner)
|
---|
| 45 | : base(original, cloner) {
|
---|
| 46 | }
|
---|
| 47 |
|
---|
[4379] | 48 | private void Swap(ZhuEncoding individual, int city1, int city2) {
|
---|
| 49 | int index1 = individual.IndexOf(city1);
|
---|
| 50 | int index2 = individual.IndexOf(city2);
|
---|
| 51 |
|
---|
| 52 | int temp = individual[index1];
|
---|
| 53 | individual[index1] = individual[index2];
|
---|
| 54 | individual[index2] = temp;
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | protected override ZhuEncoding Crossover(IRandom random, ZhuEncoding parent1, ZhuEncoding parent2) {
|
---|
| 58 | parent1 = parent1.Clone() as ZhuEncoding;
|
---|
| 59 | parent2 = parent2.Clone() as ZhuEncoding;
|
---|
| 60 |
|
---|
| 61 | ZhuEncoding child = parent2.Clone() as ZhuEncoding;
|
---|
| 62 |
|
---|
[6771] | 63 | if (parent1.Length != parent2.Length)
|
---|
| 64 | return child;
|
---|
| 65 |
|
---|
[4379] | 66 | int breakPoint = random.Next(child.Length);
|
---|
| 67 | int i = breakPoint;
|
---|
| 68 | int predecessor = breakPoint - 1;
|
---|
| 69 | if (predecessor < 0)
|
---|
| 70 | predecessor = predecessor + child.Length;
|
---|
| 71 |
|
---|
| 72 | while (i != predecessor) {
|
---|
| 73 | if (i == breakPoint) {
|
---|
| 74 | child[i] = parent1[i];
|
---|
| 75 | Swap(parent2, parent2[i], parent1[i]);
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | if (ProblemInstance.GetDistance(
|
---|
[6851] | 79 | child[i] + 1, parent1[(i + 1) % child.Length] + 1, child)
|
---|
[4379] | 80 | <
|
---|
| 81 | ProblemInstance.GetDistance(
|
---|
[6851] | 82 | child[i] + 1, parent2[(i + 1) % child.Length] + 1, child)) {
|
---|
[4379] | 83 | child[(i + 1) % child.Length] = parent1[(i + 1) % child.Length];
|
---|
| 84 | Swap(parent2, parent2[(i + 1) % child.Length], parent1[(i + 1) % child.Length]);
|
---|
| 85 | } else {
|
---|
| 86 | child[(i + 1) % child.Length] = parent2[(i + 1) % child.Length];
|
---|
| 87 | Swap(parent1, parent1[(i + 1) % child.Length], parent2[(i + 1) % child.Length]);
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | i = (i + 1) % child.Length;
|
---|
| 91 | }
|
---|
| 92 |
|
---|
| 93 | return child;
|
---|
| 94 | }
|
---|
| 95 | }
|
---|
| 96 | }
|
---|