Free cookie consent management tool by TermsFeed Policy Generator

source: branches/TSNE/HeuristicLab.Algorithms.DataAnalysis/3.4/TSNE/TSNEAlgorithm.cs @ 14785

Last change on this file since 14785 was 14785, checked in by gkronber, 7 years ago

#2700: changes and while reviewing

File size: 15.1 KB
RevLine 
[14414]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
[14518]22using System;
[14512]23using System.Collections.Generic;
24using System.Drawing;
[14414]25using System.Linq;
[14518]26using System.Threading;
[14414]27using HeuristicLab.Analysis;
28using HeuristicLab.Common;
29using HeuristicLab.Core;
30using HeuristicLab.Data;
31using HeuristicLab.Encodings.RealVectorEncoding;
[14518]32using HeuristicLab.Optimization;
[14414]33using HeuristicLab.Parameters;
34using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
35using HeuristicLab.Problems.DataAnalysis;
36using HeuristicLab.Random;
37
38namespace HeuristicLab.Algorithms.DataAnalysis {
39  /// <summary>
[14785]40  /// t-distributed stochastic neighbourhood embedding (tSNE) projects the data in a low dimensional
[14767]41  /// space to allow visual cluster identification.
[14414]42  /// </summary>
[14785]43  [Item("tSNE", "t-distributed stochastic neighbourhood embedding projects the data in a low " +
[14767]44                "dimensional space to allow visual cluster identification.")]
[14414]45  [Creatable(CreatableAttribute.Categories.DataAnalysis, Priority = 100)]
46  [StorableClass]
[14785]47  public sealed class TSNEAlgorithm : BasicAlgorithm {
[14767]48    public override bool SupportsPause {
[14558]49      get { return false; }
50    }
[14767]51    public override Type ProblemType {
[14518]52      get { return typeof(IDataAnalysisProblem); }
53    }
[14767]54    public new IDataAnalysisProblem Problem {
[14518]55      get { return (IDataAnalysisProblem)base.Problem; }
56      set { base.Problem = value; }
57    }
[14414]58
[14785]59    #region parameter names
[14414]60    private const string DistanceParameterName = "DistanceFunction";
61    private const string PerplexityParameterName = "Perplexity";
62    private const string ThetaParameterName = "Theta";
63    private const string NewDimensionsParameterName = "Dimensions";
64    private const string MaxIterationsParameterName = "MaxIterations";
65    private const string StopLyingIterationParameterName = "StopLyingIteration";
66    private const string MomentumSwitchIterationParameterName = "MomentumSwitchIteration";
67    private const string InitialMomentumParameterName = "InitialMomentum";
68    private const string FinalMomentumParameterName = "FinalMomentum";
69    private const string EtaParameterName = "Eta";
70    private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
71    private const string SeedParameterName = "Seed";
[14512]72    private const string ClassesParameterName = "ClassNames";
[14518]73    private const string NormalizationParameterName = "Normalization";
[14414]74    #endregion
75
[14785]76    #region parameter properties
[14767]77    public IFixedValueParameter<DoubleValue> PerplexityParameter {
[14414]78      get { return Parameters[PerplexityParameterName] as IFixedValueParameter<DoubleValue>; }
79    }
[14785]80    public IFixedValueParameter<DoubleValue> ThetaParameter {
81      get { return Parameters[ThetaParameterName] as IFixedValueParameter<DoubleValue>; }
[14414]82    }
[14767]83    public IFixedValueParameter<IntValue> NewDimensionsParameter {
[14414]84      get { return Parameters[NewDimensionsParameterName] as IFixedValueParameter<IntValue>; }
85    }
[14785]86    public IValueParameter<IDistance<double[]>> DistanceParameter {
87      get { return Parameters[DistanceParameterName] as IValueParameter<IDistance<double[]>>; }
[14414]88    }
[14767]89    public IFixedValueParameter<IntValue> MaxIterationsParameter {
[14414]90      get { return Parameters[MaxIterationsParameterName] as IFixedValueParameter<IntValue>; }
91    }
[14767]92    public IFixedValueParameter<IntValue> StopLyingIterationParameter {
[14414]93      get { return Parameters[StopLyingIterationParameterName] as IFixedValueParameter<IntValue>; }
94    }
[14767]95    public IFixedValueParameter<IntValue> MomentumSwitchIterationParameter {
[14414]96      get { return Parameters[MomentumSwitchIterationParameterName] as IFixedValueParameter<IntValue>; }
97    }
[14767]98    public IFixedValueParameter<DoubleValue> InitialMomentumParameter {
[14414]99      get { return Parameters[InitialMomentumParameterName] as IFixedValueParameter<DoubleValue>; }
100    }
[14767]101    public IFixedValueParameter<DoubleValue> FinalMomentumParameter {
[14414]102      get { return Parameters[FinalMomentumParameterName] as IFixedValueParameter<DoubleValue>; }
103    }
[14767]104    public IFixedValueParameter<DoubleValue> EtaParameter {
[14414]105      get { return Parameters[EtaParameterName] as IFixedValueParameter<DoubleValue>; }
106    }
[14767]107    public IFixedValueParameter<BoolValue> SetSeedRandomlyParameter {
[14414]108      get { return Parameters[SetSeedRandomlyParameterName] as IFixedValueParameter<BoolValue>; }
109    }
[14767]110    public IFixedValueParameter<IntValue> SeedParameter {
[14414]111      get { return Parameters[SeedParameterName] as IFixedValueParameter<IntValue>; }
112    }
[14767]113    public IFixedValueParameter<StringValue> ClassesParameter {
[14512]114      get { return Parameters[ClassesParameterName] as IFixedValueParameter<StringValue>; }
115    }
[14767]116    public IFixedValueParameter<BoolValue> NormalizationParameter {
[14518]117      get { return Parameters[NormalizationParameterName] as IFixedValueParameter<BoolValue>; }
118    }
[14414]119    #endregion
120
121    #region  Properties
[14785]122    public IDistance<double[]> Distance {
[14414]123      get { return DistanceParameter.Value; }
124    }
[14767]125    public double Perplexity {
[14414]126      get { return PerplexityParameter.Value.Value; }
[14785]127      set { PerplexityParameter.Value.Value = value; }
[14414]128    }
[14767]129    public double Theta {
[14785]130      get { return ThetaParameter.Value.Value; }
131      set { ThetaParameter.Value.Value = value; }
[14414]132    }
[14767]133    public int NewDimensions {
[14414]134      get { return NewDimensionsParameter.Value.Value; }
[14785]135      set { NewDimensionsParameter.Value.Value = value; }
[14414]136    }
[14767]137    public int MaxIterations {
[14414]138      get { return MaxIterationsParameter.Value.Value; }
[14785]139      set { MaxIterationsParameter.Value.Value = value; }
[14414]140    }
[14767]141    public int StopLyingIteration {
[14414]142      get { return StopLyingIterationParameter.Value.Value; }
[14785]143      set { StopLyingIterationParameter.Value.Value = value; }
[14414]144    }
[14767]145    public int MomentumSwitchIteration {
[14414]146      get { return MomentumSwitchIterationParameter.Value.Value; }
[14785]147      set { MomentumSwitchIterationParameter.Value.Value = value; }
[14414]148    }
[14767]149    public double InitialMomentum {
[14414]150      get { return InitialMomentumParameter.Value.Value; }
[14785]151      set { InitialMomentumParameter.Value.Value = value; }
[14414]152    }
[14767]153    public double FinalMomentum {
[14414]154      get { return FinalMomentumParameter.Value.Value; }
[14785]155      set { FinalMomentumParameter.Value.Value = value; }
[14414]156    }
[14767]157    public double Eta {
[14785]158      get { return EtaParameter.Value.Value; }
159      set { EtaParameter.Value.Value = value; }
[14414]160    }
[14767]161    public bool SetSeedRandomly {
[14414]162      get { return SetSeedRandomlyParameter.Value.Value; }
[14785]163      set { SetSeedRandomlyParameter.Value.Value = value; }
[14414]164    }
[14785]165    public int Seed {
166      get { return SeedParameter.Value.Value; }
167      set { SeedParameter.Value.Value = value; }
[14414]168    }
[14767]169    public string Classes {
[14512]170      get { return ClassesParameter.Value.Value; }
[14785]171      set { ClassesParameter.Value.Value = value; }
[14512]172    }
[14767]173    public bool Normalization {
[14518]174      get { return NormalizationParameter.Value.Value; }
[14785]175      set { NormalizationParameter.Value.Value = value; }
[14518]176    }
[14512]177    [Storable]
[14785]178    public TSNE<double[]> tsne;
[14414]179    #endregion
180
181    #region Constructors & Cloning
182    [StorableConstructor]
[14785]183    private TSNEAlgorithm(bool deserializing) : base(deserializing) { }
184    private TSNEAlgorithm(TSNEAlgorithm original, Cloner cloner) : base(original, cloner) { }
185    public override IDeepCloneable Clone(Cloner cloner) { return new TSNEAlgorithm(this, cloner); }
186    public TSNEAlgorithm() {
[14414]187      Problem = new RegressionProblem();
[14785]188      Parameters.Add(new ValueParameter<IDistance<double[]>>(DistanceParameterName, "The distance function used to differentiate similar from non-similar points", new EuclideanDistance()));
189      Parameters.Add(new FixedValueParameter<DoubleValue>(PerplexityParameterName, "Perplexity-Parameter of tSNE. Comparable to k in a k-nearest neighbour algorithm. Recommended value is floor(number of points /3) or lower", new DoubleValue(25)));
190      Parameters.Add(new FixedValueParameter<DoubleValue>(ThetaParameterName, "Value describing how much appoximated gradients my differ from exact gradients. Set to 0 for exact calculation and in [0,1] otherwise \n CAUTION: exact calculation of forces requires building a non-sparse N*N matrix where N is the number of data points\n This may exceed memory limitations", new DoubleValue(0)));
191      Parameters.Add(new FixedValueParameter<IntValue>(NewDimensionsParameterName, "Dimensionality of projected space (usually 2 for easy visual analysis)", new IntValue(2)));
[14414]192      Parameters.Add(new FixedValueParameter<IntValue>(MaxIterationsParameterName, "Maximum number of iterations for gradient descent", new IntValue(1000)));
[14518]193      Parameters.Add(new FixedValueParameter<IntValue>(StopLyingIterationParameterName, "Number of iterations after which p is no longer approximated", new IntValue(0)));
194      Parameters.Add(new FixedValueParameter<IntValue>(MomentumSwitchIterationParameterName, "Number of iterations after which the momentum in the gradient descent is switched", new IntValue(0)));
[14414]195      Parameters.Add(new FixedValueParameter<DoubleValue>(InitialMomentumParameterName, "The initial momentum in the gradient descent", new DoubleValue(0.5)));
196      Parameters.Add(new FixedValueParameter<DoubleValue>(FinalMomentumParameterName, "The final momentum", new DoubleValue(0.8)));
[14785]197      Parameters.Add(new FixedValueParameter<DoubleValue>(EtaParameterName, "Gradient descent learning rate", new DoubleValue(200)));
[14414]198      Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyParameterName, "If the seed should be random", new BoolValue(true)));
199      Parameters.Add(new FixedValueParameter<IntValue>(SeedParameterName, "The seed used if it should not be random", new IntValue(0)));
[14785]200      Parameters.Add(new FixedValueParameter<StringValue>(ClassesParameterName, "name of the column specifying the class lables of each data point. \n if the lable column can not be found training/test is used as labels", new StringValue("none")));
201      Parameters.Add(new FixedValueParameter<BoolValue>(NormalizationParameterName, "Whether the data should be zero centered and have variance of 1 for each variable, so different scalings are ignored", new BoolValue(true)));
[14518]202
203      MomentumSwitchIterationParameter.Hidden = true;
204      InitialMomentumParameter.Hidden = true;
205      FinalMomentumParameter.Hidden = true;
206      StopLyingIterationParameter.Hidden = true;
207      EtaParameter.Hidden = true;
[14414]208    }
209    #endregion
210
[14512]211    public override void Stop() {
212      base.Stop();
[14785]213      if (tsne != null) tsne.Running = false;
[14414]214    }
215
[14518]216    protected override void Run(CancellationToken cancellationToken) {
217      var dataRowNames = new Dictionary<string, List<int>>();
[14512]218      var rows = new Dictionary<string, ScatterPlotDataRow>();
[14742]219      var problemData = Problem.ProblemData;
[14512]220
[14785]221      //color datapoints acording to classes variable (be it double or string)
222      if (problemData.Dataset.VariableNames.Contains(Classes)) {
223        if ((problemData.Dataset as Dataset).VariableHasType<string>(Classes)) {
[14512]224          var classes = problemData.Dataset.GetStringValues(Classes).ToArray();
[14785]225          for (var i = 0; i < classes.Length; i++) {
226            if (!dataRowNames.ContainsKey(classes[i])) dataRowNames.Add(classes[i], new List<int>());
[14742]227            dataRowNames[classes[i]].Add(i);
[14512]228          }
[14785]229        } else if ((problemData.Dataset as Dataset).VariableHasType<double>(Classes)) {
[14512]230          var classValues = problemData.Dataset.GetDoubleValues(Classes).ToArray();
[14785]231          var max = classValues.Max() + 0.1;     // TODO consts
[14512]232          var min = classValues.Min() - 0.1;
[14742]233          const int contours = 8;
[14785]234          for (var i = 0; i < contours; i++) {
[14742]235            var contourname = GetContourName(i, min, max, contours);
236            dataRowNames.Add(contourname, new List<int>());
237            rows.Add(contourname, new ScatterPlotDataRow(contourname, "", new List<Point2D<double>>()));
238            rows[contourname].VisualProperties.Color = GetHeatMapColor(i, contours);
239            rows[contourname].VisualProperties.PointSize = i + 3;
[14512]240          }
[14785]241          for (var i = 0; i < classValues.Length; i++) {
[14742]242            dataRowNames[GetContourName(classValues[i], min, max, contours)].Add(i);
[14512]243          }
244        }
245      } else {
[14518]246        dataRowNames.Add("Training", problemData.TrainingIndices.ToList());
247        dataRowNames.Add("Test", problemData.TestIndices.ToList());
[14512]248      }
249
[14785]250      // set up and run tSNE
251      if (SetSeedRandomly) Seed = new System.Random().Next();
252      var random = new MersenneTwister((uint)Seed);
253      tsne = new TSNE<double[]>(Distance, random, Results, MaxIterations, StopLyingIteration, MomentumSwitchIteration, InitialMomentum, FinalMomentum, Eta, dataRowNames, rows);
[14414]254      var dataset = problemData.Dataset;
255      var allowedInputVariables = problemData.AllowedInputVariables.ToArray();
[14785]256      var data = new double[dataset.Rows][];
257      for (var row = 0; row < dataset.Rows; row++) data[row] = allowedInputVariables.Select(col => dataset.GetDoubleValue(col, row)).ToArray();
258      if (Normalization) data = NormalizeData(data);
[14742]259      tsne.Run(data, NewDimensions, Perplexity, Theta);
[14414]260    }
261
[14785]262    private static double[][] NormalizeData(IReadOnlyList<double[]> data) {
[14518]263      var n = data[0].Length;
264      var mean = new double[n];
265      var sd = new double[n];
[14785]266      var nData = new double[data.Count][];
267      for (var i = 0; i < n; i++) {
[14518]268        var i1 = i;
[14742]269        sd[i] = Enumerable.Range(0, data.Count).Select(x => data[x][i1]).StandardDeviation();
270        mean[i] = Enumerable.Range(0, data.Count).Select(x => data[x][i1]).Average();
[14518]271      }
[14785]272      for (var i = 0; i < data.Count; i++) {
273        nData[i] = new double[n];
274        for (var j = 0; j < n; j++) nData[i][j] = (data[i][j] - mean[j]) / sd[j];
[14518]275      }
276      return nData;
277    }
[14512]278    private static Color GetHeatMapColor(int contourNr, int noContours) {
279      var q = (double)contourNr / noContours;  // q in [0,1]
280      var c = q < 0.5 ? Color.FromArgb((int)(q * 2 * 255), 255, 0) : Color.FromArgb(255, (int)((1 - q) * 2 * 255), 0);
281      return c;
282    }
283    private static string GetContourName(double value, double min, double max, int noContours) {
284      var size = (max - min) / noContours;
285      var contourNr = (int)((value - min) / size);
286      return GetContourName(contourNr, min, max, noContours);
287    }
288    private static string GetContourName(int i, double min, double max, int noContours) {
289      var size = (max - min) / noContours;
290      return "[" + (min + i * size) + ";" + (min + (i + 1) * size) + ")";
291    }
[14414]292  }
293}
Note: See TracBrowser for help on using the repository browser.