Free cookie consent management tool by TermsFeed Policy Generator

source: branches/SymbolicExpressionTreeDiversityAnalyzers/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/SymbolicDataAnalysisProblem.cs @ 12049

Last change on this file since 12049 was 12049, checked in by bburlacu, 10 years ago

#2326: Addressed the issues found by the reviewer.

File size: 21.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Drawing;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Common.Resources;
27using HeuristicLab.Core;
28using HeuristicLab.Data;
29using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
30using HeuristicLab.Optimization;
31using HeuristicLab.Parameters;
32using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
33using HeuristicLab.PluginInfrastructure;
34using HeuristicLab.Problems.DataAnalysis.Symbolic.Analyzers;
35using HeuristicLab.Problems.Instances;
36
37namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
38  [StorableClass]
39  public abstract class SymbolicDataAnalysisProblem<T, U, V> : HeuristicOptimizationProblem<U, V>, IDataAnalysisProblem<T>, ISymbolicDataAnalysisProblem, IStorableContent,
40    IProblemInstanceConsumer<T>, IProblemInstanceExporter<T>
41    where T : class, IDataAnalysisProblemData
42    where U : class, ISymbolicDataAnalysisEvaluator<T>
43    where V : class, ISymbolicDataAnalysisSolutionCreator {
44
45    #region parameter names & descriptions
46    private const string ProblemDataParameterName = "ProblemData";
47    private const string SymbolicExpressionTreeGrammarParameterName = "SymbolicExpressionTreeGrammar";
48    private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
49    private const string MaximumSymbolicExpressionTreeDepthParameterName = "MaximumSymbolicExpressionTreeDepth";
50    private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength";
51    private const string MaximumFunctionDefinitionsParameterName = "MaximumFunctionDefinitions";
52    private const string MaximumFunctionArgumentsParameterName = "MaximumFunctionArguments";
53    private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
54    private const string FitnessCalculationPartitionParameterName = "FitnessCalculationPartition";
55    private const string ValidationPartitionParameterName = "ValidationPartition";
56    private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
57
58    private const string ProblemDataParameterDescription = "";
59    private const string SymbolicExpressionTreeGrammarParameterDescription = "The grammar that should be used for symbolic expression tree.";
60    private const string SymoblicExpressionTreeInterpreterParameterDescription = "The interpreter that should be used to evaluate the symbolic expression tree.";
61    private const string MaximumSymbolicExpressionTreeDepthParameterDescription = "Maximal depth of the symbolic expression. The minimum depth needed for the algorithm is 3 because two levels are reserved for the ProgramRoot and the Start symbol.";
62    private const string MaximumSymbolicExpressionTreeLengthParameterDescription = "Maximal length of the symbolic expression.";
63    private const string MaximumFunctionDefinitionsParameterDescription = "Maximal number of automatically defined functions";
64    private const string MaximumFunctionArgumentsParameterDescription = "Maximal number of arguments of automatically defined functions.";
65    private const string RelativeNumberOfEvaluatedSamplesParameterDescription = "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation.";
66    private const string FitnessCalculationPartitionParameterDescription = "The partition of the problem data training partition, that should be used to calculate the fitness of an individual.";
67    private const string ValidationPartitionParameterDescription = "The partition of the problem data training partition, that should be used to select the best model from (optional).";
68    private const string ApplyLinearScalingParameterDescription = "Flag that indicates if the individual should be linearly scaled before evaluating.";
69    #endregion
70
71    #region parameter properties
72    IParameter IDataAnalysisProblem.ProblemDataParameter {
73      get { return ProblemDataParameter; }
74    }
75    public IValueParameter<T> ProblemDataParameter {
76      get { return (IValueParameter<T>)Parameters[ProblemDataParameterName]; }
77    }
78    public IValueParameter<ISymbolicDataAnalysisGrammar> SymbolicExpressionTreeGrammarParameter {
79      get { return (IValueParameter<ISymbolicDataAnalysisGrammar>)Parameters[SymbolicExpressionTreeGrammarParameterName]; }
80    }
81    public IValueParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
82      get { return (IValueParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
83    }
84    public IFixedValueParameter<IntValue> MaximumSymbolicExpressionTreeDepthParameter {
85      get { return (IFixedValueParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeDepthParameterName]; }
86    }
87    public IFixedValueParameter<IntValue> MaximumSymbolicExpressionTreeLengthParameter {
88      get { return (IFixedValueParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; }
89    }
90    public IFixedValueParameter<IntValue> MaximumFunctionDefinitionsParameter {
91      get { return (IFixedValueParameter<IntValue>)Parameters[MaximumFunctionDefinitionsParameterName]; }
92    }
93    public IFixedValueParameter<IntValue> MaximumFunctionArgumentsParameter {
94      get { return (IFixedValueParameter<IntValue>)Parameters[MaximumFunctionArgumentsParameterName]; }
95    }
96    public IFixedValueParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
97      get { return (IFixedValueParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
98    }
99    public IFixedValueParameter<IntRange> FitnessCalculationPartitionParameter {
100      get { return (IFixedValueParameter<IntRange>)Parameters[FitnessCalculationPartitionParameterName]; }
101    }
102    public IFixedValueParameter<IntRange> ValidationPartitionParameter {
103      get { return (IFixedValueParameter<IntRange>)Parameters[ValidationPartitionParameterName]; }
104    }
105    public IFixedValueParameter<BoolValue> ApplyLinearScalingParameter {
106      get { return (IFixedValueParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
107    }
108    #endregion
109
110    #region properties
111    public string Filename { get; set; }
112    public static new Image StaticItemImage { get { return VSImageLibrary.Type; } }
113
114    IDataAnalysisProblemData IDataAnalysisProblem.ProblemData {
115      get { return ProblemData; }
116    }
117    public T ProblemData {
118      get { return ProblemDataParameter.Value; }
119      set { ProblemDataParameter.Value = value; }
120    }
121    public ISymbolicDataAnalysisGrammar SymbolicExpressionTreeGrammar {
122      get { return SymbolicExpressionTreeGrammarParameter.Value; }
123      set { SymbolicExpressionTreeGrammarParameter.Value = value; }
124    }
125    public ISymbolicDataAnalysisExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
126      get { return SymbolicExpressionTreeInterpreterParameter.Value; }
127      set { SymbolicExpressionTreeInterpreterParameter.Value = value; }
128    }
129    public IntValue MaximumSymbolicExpressionTreeDepth {
130      get { return MaximumSymbolicExpressionTreeDepthParameter.Value; }
131    }
132    public IntValue MaximumSymbolicExpressionTreeLength {
133      get { return MaximumSymbolicExpressionTreeLengthParameter.Value; }
134    }
135    public IntValue MaximumFunctionDefinitions {
136      get { return MaximumFunctionDefinitionsParameter.Value; }
137    }
138    public IntValue MaximumFunctionArguments {
139      get { return MaximumFunctionArgumentsParameter.Value; }
140    }
141    public PercentValue RelativeNumberOfEvaluatedSamples {
142      get { return RelativeNumberOfEvaluatedSamplesParameter.Value; }
143    }
144    public IntRange FitnessCalculationPartition {
145      get { return FitnessCalculationPartitionParameter.Value; }
146    }
147    public IntRange ValidationPartition {
148      get { return ValidationPartitionParameter.Value; }
149    }
150    public BoolValue ApplyLinearScaling {
151      get { return ApplyLinearScalingParameter.Value; }
152    }
153    #endregion
154
155    [StorableConstructor]
156    protected SymbolicDataAnalysisProblem(bool deserializing) : base(deserializing) { }
157    [StorableHook(HookType.AfterDeserialization)]
158    private void AfterDeserialization() {
159      if (!Parameters.ContainsKey(ApplyLinearScalingParameterName)) {
160        Parameters.Add(new FixedValueParameter<BoolValue>(ApplyLinearScalingParameterName, ApplyLinearScalingParameterDescription, new BoolValue(false)));
161        ApplyLinearScalingParameter.Hidden = true;
162
163        //it is assumed that for all symbolic regression algorithms linear scaling was set to true
164        //there is no possibility to determine the previous value of the parameter as it was stored in the evaluator
165        if (GetType().Name.Contains("SymbolicRegression"))
166          ApplyLinearScaling.Value = true;
167      }
168
169      RegisterEventHandlers();
170    }
171    protected SymbolicDataAnalysisProblem(SymbolicDataAnalysisProblem<T, U, V> original, Cloner cloner)
172      : base(original, cloner) {
173      RegisterEventHandlers();
174    }
175
176    protected SymbolicDataAnalysisProblem(T problemData, U evaluator, V solutionCreator)
177      : base(evaluator, solutionCreator) {
178      Parameters.Add(new ValueParameter<T>(ProblemDataParameterName, ProblemDataParameterDescription, problemData));
179      Parameters.Add(new ValueParameter<ISymbolicDataAnalysisGrammar>(SymbolicExpressionTreeGrammarParameterName, SymbolicExpressionTreeGrammarParameterDescription));
180      Parameters.Add(new ValueParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, SymoblicExpressionTreeInterpreterParameterDescription));
181      Parameters.Add(new FixedValueParameter<IntValue>(MaximumSymbolicExpressionTreeDepthParameterName, MaximumSymbolicExpressionTreeDepthParameterDescription));
182      Parameters.Add(new FixedValueParameter<IntValue>(MaximumSymbolicExpressionTreeLengthParameterName, MaximumSymbolicExpressionTreeLengthParameterDescription));
183      Parameters.Add(new FixedValueParameter<IntValue>(MaximumFunctionDefinitionsParameterName, MaximumFunctionDefinitionsParameterDescription));
184      Parameters.Add(new FixedValueParameter<IntValue>(MaximumFunctionArgumentsParameterName, MaximumFunctionArgumentsParameterDescription));
185      Parameters.Add(new FixedValueParameter<IntRange>(FitnessCalculationPartitionParameterName, FitnessCalculationPartitionParameterDescription));
186      Parameters.Add(new FixedValueParameter<IntRange>(ValidationPartitionParameterName, ValidationPartitionParameterDescription));
187      Parameters.Add(new FixedValueParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, RelativeNumberOfEvaluatedSamplesParameterDescription, new PercentValue(1)));
188      Parameters.Add(new FixedValueParameter<BoolValue>(ApplyLinearScalingParameterName, ApplyLinearScalingParameterDescription, new BoolValue(false)));
189
190      SymbolicExpressionTreeInterpreterParameter.Hidden = true;
191      MaximumFunctionArgumentsParameter.Hidden = true;
192      MaximumFunctionDefinitionsParameter.Hidden = true;
193      ApplyLinearScalingParameter.Hidden = true;
194
195      SymbolicExpressionTreeGrammar = new TypeCoherentExpressionGrammar();
196      SymbolicExpressionTreeInterpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
197
198      FitnessCalculationPartition.Start = ProblemData.TrainingPartition.Start;
199      FitnessCalculationPartition.End = ProblemData.TrainingPartition.End;
200
201      InitializeOperators();
202
203      UpdateGrammar();
204      RegisterEventHandlers();
205    }
206
207    protected virtual void UpdateGrammar() {
208      SymbolicExpressionTreeGrammar.MaximumFunctionArguments = MaximumFunctionArguments.Value;
209      SymbolicExpressionTreeGrammar.MaximumFunctionDefinitions = MaximumFunctionDefinitions.Value;
210      foreach (var varSymbol in SymbolicExpressionTreeGrammar.Symbols.OfType<HeuristicLab.Problems.DataAnalysis.Symbolic.Variable>()) {
211        if (!varSymbol.Fixed) {
212          varSymbol.AllVariableNames = ProblemData.InputVariables.Select(x => x.Value);
213          varSymbol.VariableNames = ProblemData.AllowedInputVariables;
214        }
215      }
216      foreach (var varSymbol in SymbolicExpressionTreeGrammar.Symbols.OfType<HeuristicLab.Problems.DataAnalysis.Symbolic.VariableCondition>()) {
217        if (!varSymbol.Fixed) {
218          varSymbol.AllVariableNames = ProblemData.InputVariables.Select(x => x.Value);
219          varSymbol.VariableNames = ProblemData.AllowedInputVariables;
220        }
221      }
222    }
223
224    private void InitializeOperators() {
225      Operators.AddRange(ApplicationManager.Manager.GetInstances<ISymbolicExpressionTreeOperator>());
226      Operators.AddRange(ApplicationManager.Manager.GetInstances<ISymbolicDataAnalysisExpressionCrossover<T>>());
227      Operators.Add(new SymbolicExpressionSymbolFrequencyAnalyzer());
228      Operators.Add(new SymbolicDataAnalysisVariableFrequencyAnalyzer());
229      Operators.Add(new MinAverageMaxSymbolicExpressionTreeLengthAnalyzer());
230      Operators.Add(new SymbolicExpressionTreeLengthAnalyzer());
231      Operators.Add(new SymbolicDataAnalysisBottomUpDiversityAnalyzer());
232      ParameterizeOperators();
233    }
234
235    #region events
236    private void RegisterEventHandlers() {
237      ProblemDataParameter.ValueChanged += new EventHandler(ProblemDataParameter_ValueChanged);
238      ProblemDataParameter.Value.Changed += (object sender, EventArgs e) => OnProblemDataChanged();
239
240      SymbolicExpressionTreeGrammarParameter.ValueChanged += new EventHandler(SymbolicExpressionTreeGrammarParameter_ValueChanged);
241
242      MaximumFunctionArguments.ValueChanged += new EventHandler(ArchitectureParameterValue_ValueChanged);
243      MaximumFunctionDefinitions.ValueChanged += new EventHandler(ArchitectureParameterValue_ValueChanged);
244      MaximumSymbolicExpressionTreeDepth.ValueChanged += new EventHandler(MaximumSymbolicExpressionTreeDepth_ValueChanged);
245    }
246
247    private void ProblemDataParameter_ValueChanged(object sender, EventArgs e) {
248      ValidationPartition.Start = 0;
249      ValidationPartition.End = 0;
250      ProblemDataParameter.Value.Changed += (object s, EventArgs args) => OnProblemDataChanged();
251      OnProblemDataChanged();
252    }
253
254    private void SymbolicExpressionTreeGrammarParameter_ValueChanged(object sender, EventArgs e) {
255      UpdateGrammar();
256    }
257
258    private void ArchitectureParameterValue_ValueChanged(object sender, EventArgs e) {
259      UpdateGrammar();
260    }
261
262    private void MaximumSymbolicExpressionTreeDepth_ValueChanged(object sender, EventArgs e) {
263      if (MaximumSymbolicExpressionTreeDepth != null && MaximumSymbolicExpressionTreeDepth.Value < 3)
264        MaximumSymbolicExpressionTreeDepth.Value = 3;
265    }
266
267    protected override void OnSolutionCreatorChanged() {
268      base.OnSolutionCreatorChanged();
269      SolutionCreator.SymbolicExpressionTreeParameter.ActualNameChanged += new EventHandler(SolutionCreator_SymbolicExpressionTreeParameter_ActualNameChanged);
270      ParameterizeOperators();
271    }
272
273    private void SolutionCreator_SymbolicExpressionTreeParameter_ActualNameChanged(object sender, EventArgs e) {
274      ParameterizeOperators();
275    }
276
277    protected override void OnEvaluatorChanged() {
278      base.OnEvaluatorChanged();
279      ParameterizeOperators();
280    }
281
282    public event EventHandler ProblemDataChanged;
283    protected virtual void OnProblemDataChanged() {
284      FitnessCalculationPartition.Start = ProblemData.TrainingPartition.Start;
285      FitnessCalculationPartition.End = ProblemData.TrainingPartition.End;
286
287      UpdateGrammar();
288      ParameterizeOperators();
289
290      var handler = ProblemDataChanged;
291      if (handler != null) handler(this, EventArgs.Empty);
292
293      OnReset();
294    }
295    #endregion
296
297    protected virtual void ParameterizeOperators() {
298      var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators).ToList();
299
300      foreach (var op in operators.OfType<ISymbolicExpressionTreeGrammarBasedOperator>()) {
301        op.SymbolicExpressionTreeGrammarParameter.ActualName = SymbolicExpressionTreeGrammarParameter.Name;
302      }
303      foreach (var op in operators.OfType<ISymbolicExpressionTreeSizeConstraintOperator>()) {
304        op.MaximumSymbolicExpressionTreeDepthParameter.ActualName = MaximumSymbolicExpressionTreeDepthParameter.Name;
305        op.MaximumSymbolicExpressionTreeLengthParameter.ActualName = MaximumSymbolicExpressionTreeLengthParameter.Name;
306      }
307      foreach (var op in operators.OfType<ISymbolicExpressionTreeArchitectureAlteringOperator>()) {
308        op.MaximumFunctionArgumentsParameter.ActualName = MaximumFunctionArgumentsParameter.Name;
309        op.MaximumFunctionDefinitionsParameter.ActualName = MaximumFunctionDefinitionsParameter.Name;
310      }
311      foreach (var op in operators.OfType<ISymbolicDataAnalysisEvaluator<T>>()) {
312        op.ProblemDataParameter.ActualName = ProblemDataParameterName;
313        op.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
314        op.EvaluationPartitionParameter.ActualName = FitnessCalculationPartitionParameter.Name;
315        op.RelativeNumberOfEvaluatedSamplesParameter.ActualName = RelativeNumberOfEvaluatedSamplesParameter.Name;
316        op.ApplyLinearScalingParameter.ActualName = ApplyLinearScalingParameter.Name;
317      }
318      foreach (var op in operators.OfType<ISymbolicExpressionTreeCrossover>()) {
319        op.ParentsParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
320        op.ChildParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
321      }
322      foreach (var op in operators.OfType<ISymbolicExpressionTreeManipulator>()) {
323        op.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
324      }
325      foreach (var op in operators.OfType<ISymbolicExpressionTreeAnalyzer>()) {
326        op.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
327      }
328      foreach (var op in operators.OfType<ISymbolicDataAnalysisSingleObjectiveAnalyzer>()) {
329        op.ApplyLinearScalingParameter.ActualName = ApplyLinearScalingParameter.Name;
330      }
331      foreach (var op in operators.OfType<ISymbolicDataAnalysisMultiObjectiveAnalyzer>()) {
332        op.ApplyLinearScalingParameter.ActualName = ApplyLinearScalingParameter.Name;
333      }
334      foreach (var op in operators.OfType<ISymbolicDataAnalysisAnalyzer>()) {
335        op.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
336      }
337      foreach (var op in operators.OfType<ISymbolicDataAnalysisValidationAnalyzer<U, T>>()) {
338        op.RelativeNumberOfEvaluatedSamplesParameter.ActualName = RelativeNumberOfEvaluatedSamplesParameter.Name;
339        op.ValidationPartitionParameter.ActualName = ValidationPartitionParameter.Name;
340      }
341      foreach (var op in operators.OfType<ISymbolicDataAnalysisInterpreterOperator>()) {
342        op.SymbolicDataAnalysisTreeInterpreterParameter.ActualName = SymbolicExpressionTreeInterpreterParameter.Name;
343      }
344      foreach (var op in operators.OfType<ISymbolicDataAnalysisExpressionCrossover<T>>()) {
345        op.EvaluationPartitionParameter.ActualName = FitnessCalculationPartitionParameter.Name;
346        op.ProblemDataParameter.ActualName = ProblemDataParameter.Name;
347        op.EvaluationPartitionParameter.ActualName = FitnessCalculationPartitionParameter.Name;
348        op.RelativeNumberOfEvaluatedSamplesParameter.ActualName = RelativeNumberOfEvaluatedSamplesParameter.Name;
349        op.EvaluatorParameter.ActualName = EvaluatorParameter.Name;
350      }
351      foreach (var op in operators.OfType<SymbolicDataAnalysisBottomUpDiversityAnalyzer>()) {
352        var sim = op.SimilarityCalculator as SymbolicExpressionTreeBottomUpSimilarityCalculator;
353        if (sim == null) {
354          op.SimilarityCalculator = new SymbolicExpressionTreeBottomUpSimilarityCalculator {
355            SolutionVariableName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName
356          };
357        } else {
358          sim.SolutionVariableName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
359        }
360      }
361    }
362
363    #region Import & Export
364    public virtual void Load(T data) {
365      Name = data.Name;
366      Description = data.Description;
367      ProblemData = data;
368    }
369
370    public virtual T Export() {
371      return ProblemData;
372    }
373    #endregion
374  }
375}
Note: See TracBrowser for help on using the repository browser.