#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification { [Item("SymbolicClassificationPhenotypicDiversityAnalyzer", "An analyzer which calculates diversity based on the phenotypic distance between trees")] [StorableClass] public class SymbolicClassificationPhenotypicDiversityAnalyzer : PopulationSimilarityAnalyzer { #region parameter names private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree"; private const string EvaluatedValuesParameterName = "EstimatedValues"; private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter"; private const string ProblemDataParameterName = "ProblemData"; private const string ModelCreatorParameterName = "ModelCreator"; private const string EstimationLimitsParameterName = "EstimationLimits"; private const string UseClassValuesParameterName = "UseClassValues"; #endregion #region parameter properties public IScopeTreeLookupParameter SymbolicExpressionTreeParameter { get { return (IScopeTreeLookupParameter)Parameters[SymbolicExpressionTreeParameterName]; } } private IScopeTreeLookupParameter EvaluatedValuesParameter { get { return (IScopeTreeLookupParameter)Parameters[EvaluatedValuesParameterName]; } } public ILookupParameter SymbolicDataAnalysisTreeInterpreterParameter { get { return (ILookupParameter)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; } } public ILookupParameter ModelCreatorParameter { get { return (ILookupParameter)Parameters[ModelCreatorParameterName]; } } public IValueLookupParameter ProblemDataParameter { get { return (IValueLookupParameter)Parameters[ProblemDataParameterName]; } } public IValueLookupParameter EstimationLimitsParameter { get { return (IValueLookupParameter)Parameters[EstimationLimitsParameterName]; } } public IFixedValueParameter UseClassValuesParameter { get { return (IFixedValueParameter)Parameters[UseClassValuesParameterName]; } } #endregion #region properties public bool UseClassValues { get { return UseClassValuesParameter.Value.Value; } set { UseClassValuesParameter.Value.Value = value; } } #endregion public SymbolicClassificationPhenotypicDiversityAnalyzer(IEnumerable validSimilarityCalculators) : base(validSimilarityCalculators) { #region add parameters Parameters.Add(new ScopeTreeLookupParameter(SymbolicExpressionTreeParameterName, "The symbolic expression trees.")); Parameters.Add(new ScopeTreeLookupParameter(EvaluatedValuesParameterName, "Intermediate estimated values to be saved in the scopes.")); Parameters.Add(new LookupParameter(SymbolicDataAnalysisTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic data analysis tree.")); Parameters.Add(new ValueLookupParameter(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated.")); Parameters.Add(new LookupParameter(ModelCreatorParameterName, "The model creator for creating discriminant function classification models.")); Parameters.Add(new ValueLookupParameter(EstimationLimitsParameterName, "The upper and lower limit that should be used as cut off value for the output values of symbolic data analysis trees.")); Parameters.Add(new FixedValueParameter(UseClassValuesParameterName, "Specifies whether the raw estimated values of the tree or the corresponding class values should be used for similarity calculation.", new BoolValue(false))); #endregion UpdateCounterParameter.ActualName = "PhenotypicDiversityAnalyzerUpdateCounter"; } [StorableConstructor] protected SymbolicClassificationPhenotypicDiversityAnalyzer(bool deserializing) : base(deserializing) { } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicClassificationPhenotypicDiversityAnalyzer(this, cloner); } private SymbolicClassificationPhenotypicDiversityAnalyzer(SymbolicClassificationPhenotypicDiversityAnalyzer original, Cloner cloner) : base(original, cloner) { } public override IOperation Apply() { int updateInterval = UpdateIntervalParameter.Value.Value; IntValue updateCounter = UpdateCounterParameter.ActualValue; if (updateCounter == null) { updateCounter = new IntValue(updateInterval); UpdateCounterParameter.ActualValue = updateCounter; } if (updateCounter.Value == updateInterval) { var trees = SymbolicExpressionTreeParameter.ActualValue; var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue; var problemData = ProblemDataParameter.ActualValue; var ds = ProblemDataParameter.ActualValue.Dataset; var rows = ProblemDataParameter.ActualValue.TrainingIndices; var modelCreator = ModelCreatorParameter.ActualValue; var estimationLimits = EstimationLimitsParameter.ActualValue; var evaluatedValues = new ItemArray(trees.Length); for (int i = 0; i < trees.Length; ++i) { var model = (IDiscriminantFunctionClassificationModel)modelCreator.CreateSymbolicDiscriminantFunctionClassificationModel(trees[i], interpreter, estimationLimits.Lower, estimationLimits.Upper); model.RecalculateModelParameters(problemData, rows); var values = UseClassValues ? model.GetEstimatedClassValues(ds, rows) : model.GetEstimatedValues(ds, rows); evaluatedValues[i] = new DoubleArray(values.ToArray()); } EvaluatedValuesParameter.ActualValue = evaluatedValues; } return base.Apply(); } } }