#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Analyzers;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Creators;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Interfaces;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.PluginInfrastructure;
using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
using HeuristicLab.Problems.DataAnalysis.Classification.Symbolic.Analyzers;
namespace HeuristicLab.Problems.DataAnalysis.Classification {
[Item("Classification Problem", "Represents a classfication problem.")]
[StorableClass]
[Creatable("Problems")]
public sealed class SymbolicClassificationProblem : SingleObjectiveClassificationProblem, IStorableContent {
private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
private const string FunctionTreeGrammarParameterName = "FunctionTreeGrammar";
private const string MaxExpressionLengthParameterName = "MaxExpressionLength";
private const string MaxExpressionDepthParameterName = "MaxExpressionDepth";
private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
private const string MaxFunctionDefiningBranchensParameterName = "MaxFunctionDefiningBranches";
private const string MaxFunctionArgumentsParameterName = "MaxFunctionArguments";
#region properties
public string Filename { get; set; }
public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
get { return SymbolicExpressionTreeInterpreterParameter.Value; }
private set { SymbolicExpressionTreeInterpreterParameter.Value = value; }
}
public IValueParameter SymbolicExpressionTreeInterpreterParameter {
get { return (IValueParameter)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
}
public ISymbolicExpressionGrammar FunctionTreeGrammar {
get { return (ISymbolicExpressionGrammar)FunctionTreeGrammarParameter.Value; }
private set { FunctionTreeGrammarParameter.Value = value; }
}
public IValueParameter FunctionTreeGrammarParameter {
get { return (IValueParameter)Parameters[FunctionTreeGrammarParameterName]; }
}
public IntValue MaxExpressionLength {
get { return MaxExpressionLengthParameter.Value; }
private set { MaxExpressionLengthParameter.Value = value; }
}
public IValueParameter MaxExpressionLengthParameter {
get { return (IValueParameter)Parameters[MaxExpressionLengthParameterName]; }
}
public IntValue MaxExpressionDepth {
get { return MaxExpressionDepthParameter.Value; }
private set { MaxExpressionDepthParameter.Value = value; }
}
public ValueParameter MaxExpressionDepthParameter {
get { return (ValueParameter)Parameters[MaxExpressionDepthParameterName]; }
}
public DoubleValue UpperEstimationLimit {
get { return UpperEstimationLimitParameter.Value; }
private set { UpperEstimationLimitParameter.Value = value; }
}
public IValueParameter UpperEstimationLimitParameter {
get { return (IValueParameter)Parameters[UpperEstimationLimitParameterName]; }
}
public DoubleValue LowerEstimationLimit {
get { return LowerEstimationLimitParameter.Value; }
private set { LowerEstimationLimitParameter.Value = value; }
}
public IValueParameter LowerEstimationLimitParameter {
get { return (IValueParameter)Parameters[LowerEstimationLimitParameterName]; }
}
public IntValue MaxFunctionDefiningBranches {
get { return MaxFunctionDefiningBranchesParameter.Value; }
private set { MaxFunctionDefiningBranchesParameter.Value = value; }
}
public IValueParameter MaxFunctionDefiningBranchesParameter {
get { return (IValueParameter)Parameters[MaxFunctionDefiningBranchensParameterName]; }
}
public IntValue MaxFunctionArguments {
get { return MaxFunctionArgumentsParameter.Value; }
private set { MaxFunctionArgumentsParameter.Value = value; }
}
public IValueParameter MaxFunctionArgumentsParameter {
get { return (IValueParameter)Parameters[MaxFunctionArgumentsParameterName]; }
}
public DoubleValue PunishmentFactor {
get { return new DoubleValue(10.0); }
}
public IntValue TrainingSamplesStart { get { return new IntValue(ClassificationProblemData.TrainingIndizes.First()); } }
public IntValue TrainingSamplesEnd {
get {
int endIndex = (int)(ClassificationProblemData.TrainingIndizes.Count() * (1.0 - ClassificationProblemData.ValidationPercentage.Value) - 1);
if (endIndex < 0) endIndex = 0;
return new IntValue(ClassificationProblemData.TrainingIndizes.ElementAt(endIndex));
}
}
public IntValue ValidationSamplesStart { get { return TrainingSamplesEnd; } }
public IntValue ValidationSamplesEnd { get { return new IntValue(ClassificationProblemData.TrainingIndizes.Last() + 1); } }
public IntValue TestSamplesStart { get { return ClassificationProblemData.TestSamplesStart; } }
public IntValue TestSamplesEnd { get { return ClassificationProblemData.TestSamplesEnd; } }
#endregion
[StorableConstructor]
private SymbolicClassificationProblem(bool deserializing) : base(deserializing) { }
private SymbolicClassificationProblem(SymbolicClassificationProblem original, Cloner cloner)
: base(original, cloner) {
RegisterParameterEvents();
}
public SymbolicClassificationProblem()
: base() {
Parameters.Add(new ValueParameter(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used to evaluate the symbolic expression tree."));
Parameters.Add(new ValueParameter(FunctionTreeGrammarParameterName, "The grammar that should be used for symbolic regression models."));
Parameters.Add(new ValueParameter(MaxExpressionLengthParameterName, "Maximal length of the symbolic expression."));
Parameters.Add(new ValueParameter(MaxExpressionDepthParameterName, "Maximal depth of the symbolic expression."));
Parameters.Add(new ValueParameter(UpperEstimationLimitParameterName, "The upper limit for the estimated value that can be returned by the symbolic regression model."));
Parameters.Add(new ValueParameter(LowerEstimationLimitParameterName, "The lower limit for the estimated value that can be returned by the symbolic regression model."));
Parameters.Add(new ValueParameter(MaxFunctionDefiningBranchensParameterName, "Maximal number of automatically defined functions."));
Parameters.Add(new ValueParameter(MaxFunctionArgumentsParameterName, "Maximal number of arguments of automatically defined functions."));
SolutionCreator = new ProbabilisticTreeCreator();
Evaluator = new SymbolicClassifacitionMeanSquaredErrorEvaluator();
ParameterizeSolutionCreator();
Maximization = new BoolValue(false);
FunctionTreeGrammar = new GlobalSymbolicExpressionGrammar(new FullFunctionalExpressionGrammar());
SymbolicExpressionTreeInterpreter = new SimpleArithmeticExpressionInterpreter();
MaxExpressionLength = new IntValue(100);
MaxExpressionDepth = new IntValue(10);
MaxFunctionDefiningBranches = new IntValue(0);
MaxFunctionArguments = new IntValue(0);
InitializeOperators();
RegisterParameterEvents();
UpdateEstimationLimits();
ParameterizeEvaluator();
ParameterizeSolutionCreator();
ParameterizeGrammar();
ParameterizeOperators();
ParameterizeAnalyzers();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicClassificationProblem(this, cloner);
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
RegisterParameterEvents();
}
private void RegisterParameterEvents() {
SolutionCreator.SymbolicExpressionTreeParameter.ActualNameChanged += new EventHandler(SolutionCreator_SymbolicExpressionTreeParameter_ActualNameChanged);
FunctionTreeGrammarParameter.ValueChanged += new EventHandler(FunctionTreeGrammarParameter_ValueChanged);
MaxFunctionArgumentsParameter.ValueChanged += new EventHandler(ArchitectureParameter_ValueChanged);
MaxFunctionDefiningBranchesParameter.ValueChanged += new EventHandler(ArchitectureParameter_ValueChanged);
MaxFunctionArgumentsParameter.Value.ValueChanged += new EventHandler(ArchitectureParameterValue_ValueChanged);
MaxFunctionDefiningBranchesParameter.Value.ValueChanged += new EventHandler(ArchitectureParameterValue_ValueChanged);
}
protected override void OnEvaluatorChanged() {
ParameterizeEvaluator();
ParameterizeAnalyzers();
ParameterizeProblem();
base.OnEvaluatorChanged();
}
protected override void OnSolutionCreatorChanged() {
ParameterizeSolutionCreator();
SolutionCreator.SymbolicExpressionTreeParameter.ActualNameChanged += new EventHandler(SolutionCreator_SymbolicExpressionTreeParameter_ActualNameChanged);
base.OnSolutionCreatorChanged();
}
private void SolutionCreator_SymbolicExpressionTreeParameter_ActualNameChanged(object sender, System.EventArgs e) {
ParameterizeEvaluator();
ParameterizeOperators();
ParameterizeAnalyzers();
}
protected override void OnClassificationProblemDataChanged() {
ParameterizeAnalyzers();
ParameterizeGrammar();
ParameterizeEvaluator();
UpdateEstimationLimits();
base.OnClassificationProblemDataChanged();
}
private void FunctionTreeGrammarParameter_ValueChanged(object sender, System.EventArgs e) {
if (!(FunctionTreeGrammar is GlobalSymbolicExpressionGrammar)) {
FunctionTreeGrammar = new GlobalSymbolicExpressionGrammar(FunctionTreeGrammar);
}
OnGrammarChanged();
}
private void OnGrammarChanged() {
ParameterizeGrammar();
}
private void ArchitectureParameter_ValueChanged(object sender, EventArgs e) {
MaxFunctionArgumentsParameter.Value.ValueChanged += new EventHandler(ArchitectureParameterValue_ValueChanged);
MaxFunctionDefiningBranchesParameter.Value.ValueChanged += new EventHandler(ArchitectureParameterValue_ValueChanged);
OnArchitectureParameterChanged();
}
private void ArchitectureParameterValue_ValueChanged(object sender, EventArgs e) {
OnArchitectureParameterChanged();
}
private void OnArchitectureParameterChanged() {
ParameterizeGrammar();
}
private void InitializeOperators() {
Operators.AddRange(ApplicationManager.Manager.GetInstances().OfType());
Operators.Add(new MinAverageMaxSymbolicExpressionTreeSizeAnalyzer());
Operators.Add(new SymbolicRegressionVariableFrequencyAnalyzer());
Operators.Add(new ValidationBestSymbolicClassificationSolutionAnalyzer());
Operators.Add(new TrainingBestSymbolicClassificationSolutionAnalyzer());
}
#region operator parameterization
private void UpdateEstimationLimits() {
if (TrainingSamplesStart.Value < TrainingSamplesEnd.Value &&
ClassificationProblemData.Dataset.VariableNames.Contains(ClassificationProblemData.TargetVariable.Value)) {
var targetValues = ClassificationProblemData.Dataset.GetVariableValues(ClassificationProblemData.TargetVariable.Value, TrainingSamplesStart.Value, TrainingSamplesEnd.Value);
var mean = targetValues.Average();
var range = targetValues.Max() - targetValues.Min();
UpperEstimationLimit = new DoubleValue(mean + PunishmentFactor.Value * range);
LowerEstimationLimit = new DoubleValue(mean - PunishmentFactor.Value * range);
}
}
private void ParameterizeEvaluator() {
if (Evaluator != null) {
Evaluator.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
Evaluator.RegressionProblemDataParameter.ActualName = ClassificationProblemDataParameter.Name;
Evaluator.SamplesStartParameter.Value = TrainingSamplesStart;
Evaluator.SamplesEndParameter.Value = TrainingSamplesEnd;
}
}
private void ParameterizeGrammar() {
List laggedSymbols = FunctionTreeGrammar.Symbols.OfType().ToList();
foreach (Symbol symbol in laggedSymbols)
FunctionTreeGrammar.RemoveSymbol(symbol);
foreach (var varSymbol in FunctionTreeGrammar.Symbols.OfType()) {
varSymbol.VariableNames = ClassificationProblemData.InputVariables.CheckedItems.Select(x => x.Value.Value);
}
var globalGrammar = FunctionTreeGrammar as GlobalSymbolicExpressionGrammar;
if (globalGrammar != null) {
globalGrammar.MaxFunctionArguments = MaxFunctionArguments.Value;
globalGrammar.MaxFunctionDefinitions = MaxFunctionDefiningBranches.Value;
}
}
private void ParameterizeSolutionCreator() {
SolutionCreator.SymbolicExpressionGrammarParameter.ActualName = FunctionTreeGrammarParameter.Name;
SolutionCreator.MaxTreeHeightParameter.ActualName = MaxExpressionDepthParameter.Name;
SolutionCreator.MaxTreeSizeParameter.ActualName = MaxExpressionLengthParameter.Name;
SolutionCreator.MaxFunctionArgumentsParameter.ActualName = MaxFunctionArgumentsParameter.Name;
SolutionCreator.MaxFunctionDefinitionsParameter.ActualName = MaxFunctionDefiningBranchesParameter.Name;
}
private void ParameterizeOperators() {
foreach (ISymbolicExpressionTreeOperator op in Operators.OfType()) {
op.MaxTreeHeightParameter.ActualName = MaxExpressionDepthParameter.Name;
op.MaxTreeSizeParameter.ActualName = MaxExpressionLengthParameter.Name;
op.SymbolicExpressionGrammarParameter.ActualName = FunctionTreeGrammarParameter.Name;
}
foreach (ISymbolicExpressionTreeCrossover op in Operators.OfType()) {
op.ParentsParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
op.ChildParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
}
foreach (ISymbolicExpressionTreeManipulator op in Operators.OfType()) {
op.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
}
foreach (ISymbolicExpressionTreeArchitectureManipulator op in Operators.OfType()) {
op.MaxFunctionArgumentsParameter.ActualName = MaxFunctionArgumentsParameter.Name;
op.MaxFunctionDefinitionsParameter.ActualName = MaxFunctionDefiningBranchesParameter.Name;
}
}
private void ParameterizeAnalyzers() {
foreach (ISymbolicRegressionAnalyzer analyzer in Operators.OfType()) {
analyzer.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
var bestValidationSolutionAnalyzer = analyzer as ValidationBestSymbolicClassificationSolutionAnalyzer;
if (bestValidationSolutionAnalyzer != null) {
bestValidationSolutionAnalyzer.ClassificationProblemDataParameter.ActualName = ClassificationProblemDataParameter.Name;
bestValidationSolutionAnalyzer.UpperEstimationLimitParameter.ActualName = UpperEstimationLimitParameter.Name;
bestValidationSolutionAnalyzer.LowerEstimationLimitParameter.ActualName = LowerEstimationLimitParameter.Name;
bestValidationSolutionAnalyzer.SymbolicExpressionTreeInterpreterParameter.ActualName = SymbolicExpressionTreeInterpreterParameter.Name;
bestValidationSolutionAnalyzer.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
bestValidationSolutionAnalyzer.ValidationSamplesStartParameter.Value = ValidationSamplesStart;
bestValidationSolutionAnalyzer.ValidationSamplesEndParameter.Value = ValidationSamplesEnd;
}
var bestTrainingSolutionAnalyzer = analyzer as TrainingBestSymbolicClassificationSolutionAnalyzer;
if (bestTrainingSolutionAnalyzer != null) {
bestTrainingSolutionAnalyzer.ProblemDataParameter.ActualName = ClassificationProblemDataParameter.Name;
bestTrainingSolutionAnalyzer.UpperEstimationLimitParameter.ActualName = UpperEstimationLimitParameter.Name;
bestTrainingSolutionAnalyzer.LowerEstimationLimitParameter.ActualName = LowerEstimationLimitParameter.Name;
bestTrainingSolutionAnalyzer.SymbolicExpressionTreeInterpreterParameter.ActualName = SymbolicExpressionTreeInterpreterParameter.Name;
bestTrainingSolutionAnalyzer.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
}
var varFreqAnalyzer = analyzer as SymbolicRegressionVariableFrequencyAnalyzer;
if (varFreqAnalyzer != null) {
varFreqAnalyzer.ProblemDataParameter.ActualName = ClassificationProblemDataParameter.Name;
}
}
}
private void ParameterizeProblem() {
if (Maximization != null) {
Maximization.Value = Evaluator.Maximization;
} else {
Maximization = new BoolValue(Evaluator.Maximization);
}
}
#endregion
}
}