#region License Information
/* HeuristicLab
* Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.MainForm;
using HeuristicLab.MainForm.WindowsForms;
using HeuristicLab.Optimization;
using HeuristicLab.PluginInfrastructure;
namespace HeuristicLab.Analysis.Statistics {
[View("Sample Size Influence")]
[Content(typeof(RunCollection), false)]
public partial class SampleSizeInfluenceView : AsynchronousContentView {
private enum AxisDimension { Color = 0 }
private const string BoxPlotSeriesName = "BoxPlotSeries";
private const string BoxPlotChartAreaName = "BoxPlotChartArea";
private bool suppressUpdates = false;
private string xAxisValue;
private string yAxisValue;
private Dictionary> categoricalMapping;
private SortedDictionary seriesCache;
public SampleSizeInfluenceView() {
InitializeComponent();
categoricalMapping = new Dictionary>();
seriesCache = new SortedDictionary();
chart.ChartAreas[0].Visible = false;
chart.Series.Clear();
chart.ChartAreas.Add(BoxPlotChartAreaName);
chart.CustomizeAllChartAreas();
chart.ChartAreas[BoxPlotChartAreaName].Axes.ToList().ForEach(x => { x.ScaleView.Zoomable = true; x.ScaleView.MinSize = 0; });
chart.ChartAreas[BoxPlotChartAreaName].CursorX.Interval = 0.5;
chart.ChartAreas[BoxPlotChartAreaName].CursorY.Interval = 1e-5;
}
public new RunCollection Content {
get { return (RunCollection)base.Content; }
set { base.Content = value; }
}
public IStringConvertibleMatrix Matrix {
get { return this.Content; }
}
#region RunCollection and Run events
protected override void RegisterContentEvents() {
base.RegisterContentEvents();
Content.Reset += new EventHandler(Content_Reset);
Content.ColumnNamesChanged += new EventHandler(Content_ColumnNamesChanged);
Content.ItemsAdded += new HeuristicLab.Collections.CollectionItemsChangedEventHandler(Content_ItemsAdded);
Content.ItemsRemoved += new HeuristicLab.Collections.CollectionItemsChangedEventHandler(Content_ItemsRemoved);
Content.CollectionReset += new HeuristicLab.Collections.CollectionItemsChangedEventHandler(Content_CollectionReset);
Content.UpdateOfRunsInProgressChanged += new EventHandler(Content_UpdateOfRunsInProgressChanged);
Content.OptimizerNameChanged += new EventHandler(Content_AlgorithmNameChanged);
RegisterRunEvents(Content);
}
protected override void DeregisterContentEvents() {
base.DeregisterContentEvents();
Content.Reset -= new EventHandler(Content_Reset);
Content.ColumnNamesChanged -= new EventHandler(Content_ColumnNamesChanged);
Content.ItemsAdded -= new HeuristicLab.Collections.CollectionItemsChangedEventHandler(Content_ItemsAdded);
Content.ItemsRemoved -= new HeuristicLab.Collections.CollectionItemsChangedEventHandler(Content_ItemsRemoved);
Content.CollectionReset -= new HeuristicLab.Collections.CollectionItemsChangedEventHandler(Content_CollectionReset);
Content.UpdateOfRunsInProgressChanged -= new EventHandler(Content_UpdateOfRunsInProgressChanged);
Content.OptimizerNameChanged -= new EventHandler(Content_AlgorithmNameChanged);
DeregisterRunEvents(Content);
}
protected virtual void RegisterRunEvents(IEnumerable runs) {
foreach (IRun run in runs)
run.Changed += new EventHandler(run_Changed);
}
protected virtual void DeregisterRunEvents(IEnumerable runs) {
foreach (IRun run in runs)
run.Changed -= new EventHandler(run_Changed);
}
private void Content_CollectionReset(object sender, HeuristicLab.Collections.CollectionItemsChangedEventArgs e) {
DeregisterRunEvents(e.OldItems);
RegisterRunEvents(e.Items);
}
private void Content_ItemsRemoved(object sender, HeuristicLab.Collections.CollectionItemsChangedEventArgs e) {
DeregisterRunEvents(e.Items);
}
private void Content_ItemsAdded(object sender, HeuristicLab.Collections.CollectionItemsChangedEventArgs e) {
RegisterRunEvents(e.Items);
}
private void Content_UpdateOfRunsInProgressChanged(object sender, EventArgs e) {
if (InvokeRequired)
Invoke(new EventHandler(Content_UpdateOfRunsInProgressChanged), sender, e);
else {
suppressUpdates = Content.UpdateOfRunsInProgress;
if (!suppressUpdates) UpdateDataPoints();
}
}
private void Content_Reset(object sender, EventArgs e) {
if (InvokeRequired)
Invoke(new EventHandler(Content_Reset), sender, e);
else {
this.categoricalMapping.Clear();
UpdateDataPoints();
UpdateAxisLabels();
}
}
private void Content_ColumnNamesChanged(object sender, EventArgs e) {
if (InvokeRequired)
Invoke(new EventHandler(Content_ColumnNamesChanged), sender, e);
else {
UpdateComboBoxes();
}
}
private void run_Changed(object sender, EventArgs e) {
if (InvokeRequired)
this.Invoke(new EventHandler(run_Changed), sender, e);
else if (!suppressUpdates) {
UpdateDataPoints();
}
}
private void Content_AlgorithmNameChanged(object sender, EventArgs e) {
if (InvokeRequired)
Invoke(new EventHandler(Content_AlgorithmNameChanged), sender, e);
else UpdateCaption();
}
#endregion
#region update comboboxes, datapoints, runs
protected override void OnContentChanged() {
base.OnContentChanged();
this.categoricalMapping.Clear();
UpdateComboBoxes();
UpdateDataPoints();
UpdateCaption();
}
private void UpdateCaption() {
Caption = Content != null ? Content.OptimizerName + " Sample Size Influence" : ViewAttribute.GetViewName(GetType());
}
private void UpdateSampleSizes() {
string selectedYAxis = (string)this.yAxisComboBox.SelectedItem;
if (selectedYAxis != null && xAxisComboBox.Text.Trim() == string.Empty) {
List values = new List();
foreach (IRun run in Content.Where(x => x.Visible)) {
double? cv = GetValue(run, selectedYAxis);
if (cv.HasValue) {
values.Add(cv.Value);
}
}
if (values.Count() > 0) {
xAxisComboBox.Text = "1; ";
xAxisComboBox.Text += ((int)(values.Count() / 4)).ToString() + "; ";
xAxisComboBox.Text += ((int)(values.Count() / 2)).ToString() + "; ";
xAxisComboBox.Text += ((int)(values.Count() / 4 * 3)).ToString() + "; ";
xAxisComboBox.Text += ((int)(values.Count())).ToString();
}
}
}
private void UpdateComboBoxes() {
string selectedYAxis = (string)this.yAxisComboBox.SelectedItem;
this.xAxisComboBox.Text = string.Empty;
this.yAxisComboBox.Items.Clear();
if (Content != null) {
string[] additionalAxisDimension = Enum.GetNames(typeof(AxisDimension));
UpdateSampleSizes();
this.yAxisComboBox.Items.AddRange(additionalAxisDimension);
this.yAxisComboBox.Items.AddRange(Matrix.ColumnNames.ToArray());
bool changed = false;
if (selectedYAxis != null && yAxisComboBox.Items.Contains(selectedYAxis)) {
yAxisComboBox.SelectedItem = selectedYAxis;
changed = true;
}
if (changed)
UpdateDataPoints();
}
}
private void UpdateDataPoints() {
this.chart.Series.Clear();
this.seriesCache.Clear();
if (Content != null) {
var usableRuns = Content.Where(r => r.Visible).ToList();
Random rand = new Random();
List groupSizes = ParseGroupSizesFromText(xAxisComboBox.Text);
foreach (int gs in groupSizes) {
int idx = gs;
List runGroup = new List();
if (idx > usableRuns.Count()) {
idx = usableRuns.Count();
}
for (int i = 0; i < idx; i++) {
int r = rand.Next(usableRuns.Count());
runGroup.Add(usableRuns[r]);
}
runGroup.ForEach(x => AddDataPoint(x, idx));
}
foreach (Series s in this.seriesCache.Values)
this.chart.Series.Add(s);
UpdateStatistics();
if (seriesCache.Count > 0) {
Series boxPlotSeries = CreateBoxPlotSeries();
this.chart.Series.Add(boxPlotSeries);
}
UpdateAxisLabels();
if (groupSizes.Any())
AddSampleSizeText();
} else {
sampleSizeTextBox.Text = string.Empty;
}
UpdateNoRunsVisibleLabel();
}
private void AddSampleSizeText() {
sampleSizeTextBox.Text = string.Empty;
var usableRuns = Content.Where(r => r.Visible).ToList();
if (!yAxisComboBox.DroppedDown)
this.yAxisValue = (string)yAxisComboBox.SelectedItem;
List yValue = usableRuns.Select(x => GetValue(x, this.yAxisValue)).ToList();
if (yValue.Any(x => !x.HasValue)) return;
double y = SampleSizeDetermination.DetermineSampleSizeByEstimatingMeanForLargeSampleSizes(yValue.Select(x => x.Value).ToArray());
sampleSizeTextBox.Text = y.ToString();
}
private List ParseGroupSizesFromText(string groupsText, bool verbose = true) {
const string delimitor = ";";
string[] gs = groupsText.Split(delimitor.ToString().ToCharArray());
List vals = new List();
foreach (string s in gs) {
string ns = s.Trim();
if (ns != string.Empty) {
int v = 0;
try {
v = int.Parse(ns);
vals.Add(v);
}
catch (Exception ex) {
if (verbose) {
ErrorHandling.ShowErrorDialog("Can't parse group sizes. Please only use numbers seperated by a semicolon. ", ex);
}
}
}
}
return vals;
}
private void UpdateStatistics() {
DoubleMatrix matrix = new DoubleMatrix(11, seriesCache.Count);
matrix.SortableView = false;
List columnNames = new List();
foreach (Series series in seriesCache.Values) {
DataPoint datapoint = series.Points.FirstOrDefault();
if (datapoint != null) {
IRun run = (IRun)datapoint.Tag;
string selectedAxis = xAxisComboBox.Text;
IItem value = null;
if (Enum.IsDefined(typeof(AxisDimension), selectedAxis)) {
AxisDimension axisDimension = (AxisDimension)Enum.Parse(typeof(AxisDimension), selectedAxis);
switch (axisDimension) {
case AxisDimension.Color: value = new StringValue(run.Color.ToString());
break;
}
}
string columnName = string.Empty;
if (value != null && value is DoubleValue || value is IntValue) {
columnName = selectedAxis + ": ";
columnName += value.ToString();
} else {
columnName = series.Name;
}
columnNames.Add(columnName);
}
}
matrix.ColumnNames = columnNames;
matrix.RowNames = new string[] { "Count", "Minimum", "Maximum", "Average", "Median", "Standard Deviation", "Variance", "25th Percentile", "75th Percentile", "Lower Confidence Int.", "Upper Confidence Int." };
for (int i = 0; i < seriesCache.Count; i++) {
Series series = seriesCache.ElementAt(i).Value;
double[] seriesValues = series.Points.Select(p => p.YValues[0]).OrderBy(d => d).ToArray();
Tuple confIntervals = seriesValues.ConfidenceIntervals(0.95);
matrix[0, i] = seriesValues.Length;
matrix[1, i] = seriesValues.Min();
matrix[2, i] = seriesValues.Max();
matrix[3, i] = seriesValues.Average();
matrix[4, i] = seriesValues.Median();
matrix[5, i] = seriesValues.StandardDeviation();
matrix[6, i] = seriesValues.Variance();
matrix[7, i] = seriesValues.Percentile(0.25);
matrix[8, i] = seriesValues.Percentile(0.75);
matrix[9, i] = confIntervals.Item1;
matrix[10, i] = confIntervals.Item2;
}
statisticsMatrixView.Content = matrix;
}
private Series CreateBoxPlotSeries() {
Series boxPlotSeries = new Series(BoxPlotSeriesName);
string seriesNames = string.Concat(seriesCache.Keys.Select(x => x.ToString() + ";").ToArray());
seriesNames = seriesNames.Remove(seriesNames.Length - 1); //delete last ; from string
boxPlotSeries.ChartArea = BoxPlotChartAreaName;
boxPlotSeries.ChartType = SeriesChartType.BoxPlot;
boxPlotSeries["BoxPlotSeries"] = seriesNames;
boxPlotSeries["BoxPlotShowUnusualValues"] = "true";
boxPlotSeries["PointWidth"] = "0.4";
boxPlotSeries.BackGradientStyle = System.Windows.Forms.DataVisualization.Charting.GradientStyle.VerticalCenter;
boxPlotSeries.BackSecondaryColor = System.Drawing.Color.FromArgb(130, 224, 64, 10);
boxPlotSeries.BorderColor = System.Drawing.Color.FromArgb(64, 64, 64);
boxPlotSeries.Color = System.Drawing.Color.FromArgb(224, 64, 10);
return boxPlotSeries;
}
private void AddDataPoint(IRun run, int idx) {
double xValue;
double? yValue;
this.xAxisValue = xAxisComboBox.Text;
if (!yAxisComboBox.DroppedDown)
this.yAxisValue = (string)yAxisComboBox.SelectedItem;
xValue = idx;
yValue = GetValue(run, this.yAxisValue);
if (yValue.HasValue) {
if (!this.seriesCache.ContainsKey(xValue))
seriesCache[xValue] = new Series(xValue.ToString());
Series series = seriesCache[xValue];
DataPoint point = new DataPoint(xValue, yValue.Value);
point.Tag = run;
series.Points.Add(point);
}
}
#endregion
#region get values from run
private double? GetValue(IRun run, string columnName) {
if (run == null || string.IsNullOrEmpty(columnName))
return null;
if (Enum.IsDefined(typeof(AxisDimension), columnName)) {
AxisDimension axisDimension = (AxisDimension)Enum.Parse(typeof(AxisDimension), columnName);
return GetValue(run, axisDimension);
} else {
int columnIndex = Matrix.ColumnNames.ToList().IndexOf(columnName);
IItem value = Content.GetValue(run, columnIndex);
if (value == null)
return null;
DoubleValue doubleValue = value as DoubleValue;
IntValue intValue = value as IntValue;
TimeSpanValue timeSpanValue = value as TimeSpanValue;
double? ret = null;
if (doubleValue != null) {
if (!double.IsNaN(doubleValue.Value) && !double.IsInfinity(doubleValue.Value))
ret = doubleValue.Value;
} else if (intValue != null)
ret = intValue.Value;
else if (timeSpanValue != null) {
ret = timeSpanValue.Value.TotalSeconds;
} else
ret = GetCategoricalValue(columnIndex, value.ToString());
return ret;
}
}
private double GetCategoricalValue(int dimension, string value) {
if (!this.categoricalMapping.ContainsKey(dimension)) {
this.categoricalMapping[dimension] = new Dictionary