#region License Information
/* HeuristicLab
* Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Linq;
using HeuristicLab.Common;
namespace HeuristicLab.Analysis.Statistics {
public static class SampleSizeDetermination {
///
/// Determines for a given sample the required sample size as described in
/// Göran Kauermann, Helmut Küchenhoff: Stichproben: Methoden und praktische Umsetzung mit R, chapter 2.27.
///
/// The pilot sample.
/// Confidence Interval.
/// Number of required samples for the given confidence interval.
public static int DetermineSampleSizeByEstimatingMean(double[] samples, double conf = 0.95) {
if (conf < 0.0 || conf > 1.0) throw new ArgumentException("The confidence interval must be between zero and one.");
var confInterval = samples.ConfidenceIntervals(0.95);
double e = (confInterval.Item2 - confInterval.Item1) / 2;
double s = samples.EstimatedStandardDeviation();
double z = alglib.invnormaldistribution((conf + 1) / 2);
double n = samples.Count();
double result = Math.Pow(s, 2) / ((Math.Pow(e, 2) / Math.Pow(z, 2)) + (Math.Pow(s, 2) / n));
result = Math.Ceiling(result);
if (result > int.MaxValue)
return int.MaxValue;
else
return (int)result;
}
public static int DetermineSampleSizeByEstimatingMeanForLargeSampleSizes(double[] samples, double conf = 0.95) {
if (conf < 0.0 || conf > 1.0) throw new ArgumentException("The confidence interval must be between zero and one.");
var confInterval = samples.ConfidenceIntervals(0.95);
double e = (confInterval.Item2 - confInterval.Item1) / 2;
double s = samples.EstimatedStandardDeviation();
double z = alglib.invnormaldistribution((conf + 1) / 2);
double result = Math.Pow(z, 2) * (Math.Pow(s, 2) / Math.Pow(e, 2));
result = Math.Ceiling(result);
if (result > int.MaxValue)
return int.MaxValue;
else
return (int)result;
}
///
/// Calculates Cohen's d.
///
/// Cohen's d.
/// d = 0.2 means small effect
/// d = 0.5 means medium effect
/// d = 0.8 means big effect
/// According to Wikipedia this means: "A lower Cohen's d indicates a necessity of larger sample sizes, and vice versa."
///
public static double CalculateCohensD(double[] d1, double[] d2) {
double x1, x2, s1, s2;
x1 = d1.Average();
x2 = d2.Average();
s1 = d1.Variance();
s2 = d2.Variance();
return (x1 - x2) / Math.Sqrt((s1 + s2) / 2);
}
///
/// Calculates Hedges' g.
/// Hedges' g works like Cohen's d but corrects for bias.
///
/// Hedges' g
public static double CalculateHedgesG(double[] d1, double[] d2) {
double x1, x2, s1, s2, n1, n2, s, g, c;
x1 = d1.Average();
x2 = d2.Average();
s1 = d1.Variance();
s2 = d2.Variance();
n1 = d1.Count();
n2 = d2.Count();
s = Math.Sqrt(((n1 - 1) * s1 + (n2 - 1) * s2) / (n1 + n2 - 2));
g = (x1 - x2) / s;
c = (1 - (3 / (4 * (n1 + n2) - 9))) * g;
return c;
}
}
}