#region License Information /* HeuristicLab * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using HeuristicLab.Common; namespace HeuristicLab.Analysis.Statistics { public static class SampleSizeDetermination { /// /// Determines for a given sample the required sample size as described in /// Göran Kauermann, Helmut Küchenhoff: Stichproben: Methoden und praktische Umsetzung mit R, chapter 2.27. /// /// The pilot sample. /// Confidence Interval. /// Number of required samples for the given confidence interval. public static int DetermineSampleSizeByEstimatingMean(double[] samples, double conf = 0.95) { if (conf < 0.0 || conf > 1.0) throw new ArgumentException("The confidence interval must be between zero and one."); var confInterval = samples.ConfidenceIntervals(0.95); double e = (confInterval.Item2 - confInterval.Item1) / 2; double s = samples.EstimatedStandardDeviation(); double z = alglib.invnormaldistribution((conf + 1) / 2); double n = samples.Count(); double result = Math.Pow(s, 2) / ((Math.Pow(e, 2) / Math.Pow(z, 2)) + (Math.Pow(s, 2) / n)); result = Math.Ceiling(result); if (result > int.MaxValue) return int.MaxValue; else return (int)result; } public static int DetermineSampleSizeByEstimatingMeanForLargeSampleSizes(double[] samples, double conf = 0.95) { if (conf < 0.0 || conf > 1.0) throw new ArgumentException("The confidence interval must be between zero and one."); var confInterval = samples.ConfidenceIntervals(0.95); double e = (confInterval.Item2 - confInterval.Item1) / 2; double s = samples.EstimatedStandardDeviation(); double z = alglib.invnormaldistribution((conf + 1) / 2); double result = Math.Pow(z, 2) * (Math.Pow(s, 2) / Math.Pow(e, 2)); result = Math.Ceiling(result); if (result > int.MaxValue) return int.MaxValue; else return (int)result; } /// /// Calculates Cohen's d. /// /// Cohen's d. /// d = 0.2 means small effect /// d = 0.5 means medium effect /// d = 0.8 means big effect /// According to Wikipedia this means: "A lower Cohen's d indicates a necessity of larger sample sizes, and vice versa." /// public static double CalculateCohensD(double[] d1, double[] d2) { double x1, x2, s1, s2; x1 = d1.Average(); x2 = d2.Average(); s1 = d1.Variance(); s2 = d2.Variance(); return (x1 - x2) / Math.Sqrt((s1 + s2) / 2); } /// /// Calculates Hedges' g. /// Hedges' g works like Cohen's d but corrects for bias. /// /// Hedges' g public static double CalculateHedgesG(double[] d1, double[] d2) { double x1, x2, s1, s2, n1, n2, s, g, c; x1 = d1.Average(); x2 = d2.Average(); s1 = d1.Variance(); s2 = d2.Variance(); n1 = d1.Count(); n2 = d2.Count(); s = Math.Sqrt(((n1 - 1) * s1 + (n2 - 1) * s2) / (n1 + n2 - 2)); g = (x1 - x2) / s; c = (1 - (3 / (4 * (n1 + n2) - 9))) * g; return c; } } }