#region License Information /* HeuristicLab * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; namespace HeuristicLab.Analysis.Statistics { public static class KruskalWallis { /// /// Performs the Kruskal-Wallis test and returns the p-Value. /// (source based on R's kruskal.test(), GNU GPL) /// public static double Test(double[][] data) { double[] g; double[] x = FlattenArray(data, out g); int n = x.Length; int parameter = data.Length - 1; int[] r = Rank(x); double[][] ties = CountDuplicates(x); double statistic = CalculateStatistic(r, g); double tiesCorrection = CalculateTiesCorrection(ties); statistic = ((12 * statistic / (n * (n + 1)) - 3 * (n + 1)) / (1 - tiesCorrection / (Math.Pow(n, 3) - n))); return alglib.chisquarecdistribution(parameter, statistic); } private static double CalculateStatistic(int[] r, double[] g) { double result = 0.0; double lastG = g[0]; double curSum = 0.0; int cnt = 0; for (int i = 0; i < r.Length; i++) { if (lastG == g[i]) { curSum += r[i]; cnt++; } else { double sum = Math.Pow(curSum, 2); sum /= cnt; result += sum; lastG = g[i]; curSum = r[i]; cnt = 1; } } double lastSum = Math.Pow(curSum, 2); lastSum /= cnt; result += lastSum; return result; } private static double CalculateTiesCorrection(double[][] ties) { double sum = 0.0; for (int i = 0; i < ties[1].Length; i++) { double tic = Math.Pow(ties[1][i], 3) - ties[1][i]; sum += tic; } return sum; } private static double[] FlattenArray(double[][] x, out double[] indizes) { int compLenght = 0; for (int i = 0; i < x.Length; i++) { compLenght += x[i].Length; } double[] result = new double[compLenght]; indizes = new double[compLenght]; int resultPos = 0; for (int i = 0; i < x.Length; i++) { Array.Copy(x[i], 0, result, resultPos, x[i].Length); for (int j = resultPos; j < resultPos + x[i].Length; j++) { indizes[j] = i; } resultPos += x[i].Length; } return result; } private static double[][] CountDuplicates(double[] x) { List number = new List(); List cnt = new List(); double[] sortedX = new double[x.Length]; Array.Copy(x, sortedX, x.Length); Array.Sort(sortedX); double last = x[0]; number.Add(x[0]); cnt.Add(1); for (int i = 1; i < x.Length; i++) { if (last != x[i]) { number.Add(x[i]); last = x[i]; cnt.Add(1); } else { cnt[cnt.Count - 1] += 1; } } double[][] result = new double[2][]; result[0] = number.ToArray(); result[1] = cnt.ToArray(); return result; } private static int[] Rank(double[] x) { double[] keys = new double[x.Length]; int[] items = new int[x.Length]; int[] ranks = new int[x.Length]; Array.Copy(x, keys, x.Length); for (int i = 0; i < x.Length; i++) items[i] = i; Array.Sort(keys, items); for (int i = 0; i < x.Length; i++) { ranks[items[i]] = i + 1; } return ranks; } } }