using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { [StorableClass] [Item("SymbolicRegressionPruningOperator", "An operator which prunes symbolic regression trees.")] public class SymbolicRegressionPruningOperator : SymbolicDataAnalysisExpressionPruningOperator { private const string ImpactValuesCalculatorParameterName = "ImpactValuesCalculator"; private const string ImpactValuesCalculatorParameterDescription = "The impact values calculator to be used for figuring out the node impacts."; private const string EvaluatorParameterName = "Evaluator"; public ILookupParameter EvaluatorParameter { get { return (ILookupParameter)Parameters[EvaluatorParameterName]; } } protected SymbolicRegressionPruningOperator(SymbolicRegressionPruningOperator original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicRegressionPruningOperator(this, cloner); } [StorableConstructor] protected SymbolicRegressionPruningOperator(bool deserializing) : base(deserializing) { } public SymbolicRegressionPruningOperator() { var impactValuesCalculator = new SymbolicRegressionSolutionImpactValuesCalculator(); Parameters.Add(new ValueParameter(ImpactValuesCalculatorParameterName, ImpactValuesCalculatorParameterDescription, impactValuesCalculator)); Parameters.Add(new LookupParameter(EvaluatorParameterName)); } protected override ISymbolicDataAnalysisModel CreateModel() { return new SymbolicRegressionModel(SymbolicExpressionTree, Interpreter, EstimationLimits.Lower, EstimationLimits.Upper); } protected override double Evaluate(IDataAnalysisModel model) { var regressionModel = (IRegressionModel)model; var regressionProblemData = (IRegressionProblemData)ProblemData; var trainingIndices = ProblemData.TrainingIndices.ToList(); var estimatedValues = regressionModel.GetEstimatedValues(ProblemData.Dataset, trainingIndices); // also bounds the values var targetValues = ProblemData.Dataset.GetDoubleValues(regressionProblemData.TargetVariable, trainingIndices); OnlineCalculatorError errorState; var quality = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, estimatedValues, out errorState); if (errorState != OnlineCalculatorError.None) return double.NaN; return quality; } } }