#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
///
/// Represents a symbolic classification model
///
[StorableClass]
[Item(Name = "SymbolicDiscriminantFunctionClassificationModel", Description = "Represents a symbolic classification model unsing a discriminant function.")]
public class SymbolicDiscriminantFunctionClassificationModel : SymbolicClassificationModel, ISymbolicDiscriminantFunctionClassificationModel {
[Storable]
private double[] thresholds;
public IEnumerable Thresholds {
get { return (IEnumerable)thresholds.Clone(); }
private set { thresholds = value.ToArray(); }
}
[Storable]
private double[] classValues;
public IEnumerable ClassValues {
get { return (IEnumerable)classValues.Clone(); }
private set { classValues = value.ToArray(); }
}
private IDiscriminantFunctionThresholdCalculator thresholdCalculator;
[Storable]
public IDiscriminantFunctionThresholdCalculator ThresholdCalculator {
get { return thresholdCalculator; }
private set { thresholdCalculator = value; }
}
[StorableConstructor]
protected SymbolicDiscriminantFunctionClassificationModel(bool deserializing) : base(deserializing) { }
protected SymbolicDiscriminantFunctionClassificationModel(SymbolicDiscriminantFunctionClassificationModel original, Cloner cloner)
: base(original, cloner) {
classValues = (double[])original.classValues.Clone();
thresholds = (double[])original.thresholds.Clone();
thresholdCalculator = cloner.Clone(original.thresholdCalculator);
}
public SymbolicDiscriminantFunctionClassificationModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IDiscriminantFunctionThresholdCalculator thresholdCalculator,
double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue)
: base(tree, interpreter, lowerEstimationLimit, upperEstimationLimit) {
this.thresholds = new double[0];
this.classValues = new double[0];
this.ThresholdCalculator = thresholdCalculator;
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
// BackwardsCompatibility3.4
#region Backwards compatible code, remove with 3.5
if (ThresholdCalculator == null) ThresholdCalculator = new AccuracyMaximizationThresholdCalculator();
#endregion
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicDiscriminantFunctionClassificationModel(this, cloner);
}
public void SetThresholdsAndClassValues(IEnumerable thresholds, IEnumerable classValues) {
var classValuesArr = classValues.ToArray();
var thresholdsArr = thresholds.ToArray();
if (thresholdsArr.Length != classValuesArr.Length || thresholdsArr.Length < 1)
throw new ArgumentException();
if (!double.IsNegativeInfinity(thresholds.First()))
throw new ArgumentException();
this.classValues = classValuesArr;
this.thresholds = thresholdsArr;
OnThresholdsChanged(EventArgs.Empty);
}
public override void RecalculateModelParameters(IClassificationProblemData problemData, IEnumerable rows) {
double[] classValues;
double[] thresholds;
var targetClassValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
var estimatedTrainingValues = GetEstimatedValues(problemData.Dataset, rows);
thresholdCalculator.Calculate(problemData, estimatedTrainingValues, targetClassValues, out classValues, out thresholds);
SetThresholdsAndClassValues(thresholds, classValues);
}
public IEnumerable GetEstimatedValues(Dataset dataset, IEnumerable rows) {
return Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows).LimitToRange(LowerEstimationLimit, UpperEstimationLimit);
}
public override IEnumerable GetEstimatedClassValues(Dataset dataset, IEnumerable rows) {
var estimatedValues = GetEstimatedValues(dataset, rows);
return GetEstimatedClassValues(estimatedValues);
}
public IEnumerable GetEstimatedClassValues(IEnumerable estimatedValues) {
if (!Thresholds.Any() && !ClassValues.Any()) throw new ArgumentException("No thresholds and class values were set for the current symbolic classification model.");
foreach (var x in estimatedValues) {
int classIndex = 0;
// find first threshold value which is larger than x => class index = threshold index + 1
for (int i = 0; i < thresholds.Length; i++) {
if (x > thresholds[i]) classIndex++;
else break;
}
yield return classValues.ElementAt(classIndex - 1);
}
}
public override ISymbolicClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
return CreateDiscriminantClassificationSolution(problemData);
}
public SymbolicDiscriminantFunctionClassificationSolution CreateDiscriminantClassificationSolution(IClassificationProblemData problemData) {
return new SymbolicDiscriminantFunctionClassificationSolution(this, new ClassificationProblemData(problemData));
}
IClassificationSolution IClassificationModel.CreateClassificationSolution(IClassificationProblemData problemData) {
return CreateDiscriminantClassificationSolution(problemData);
}
IDiscriminantFunctionClassificationSolution IDiscriminantFunctionClassificationModel.CreateDiscriminantFunctionClassificationSolution(IClassificationProblemData problemData) {
return CreateDiscriminantClassificationSolution(problemData);
}
#region events
public event EventHandler ThresholdsChanged;
protected virtual void OnThresholdsChanged(EventArgs e) {
var listener = ThresholdsChanged;
if (listener != null) listener(this, e);
}
#endregion
}
}