#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections; using System.Collections.Generic; using System.IO; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class ClusteringCSVInstanceProvider : ClusteringInstanceProvider { public override string Name { get { return "CSV File"; } } public override string Description { get { return ""; } } public override Uri WebLink { get { return new Uri("http://dev.heuristiclab.com/trac.fcgi/wiki/Documentation/FAQ#DataAnalysisImportFileFormat"); } } public override string ReferencePublication { get { return ""; } } public override IEnumerable GetDataDescriptors() { return new List(); } public override IClusteringProblemData LoadData(IDataDescriptor descriptor) { throw new NotImplementedException(); } public override bool CanImportData { get { return true; } } public override IClusteringProblemData ImportData(string path) { var csvFileParser = new TableFileParser(); csvFileParser.Parse(path, csvFileParser.AreColumnNamesInFirstLine(path)); Dataset dataset = new Dataset(csvFileParser.VariableNames, csvFileParser.Values); // turn of input variables that are constant in the training partition var allowedInputVars = new List(); var trainingIndizes = Enumerable.Range(0, (csvFileParser.Rows * 2) / 3); if (trainingIndizes.Count() >= 2) { foreach (var variableName in dataset.DoubleVariables) { if (dataset.GetDoubleValues(variableName, trainingIndizes).Range() > 0) allowedInputVars.Add(variableName); } } else { allowedInputVars.AddRange(dataset.DoubleVariables); } ClusteringProblemData clusteringData = new ClusteringProblemData(dataset, allowedInputVars); int trainingPartEnd = trainingIndizes.Last(); clusteringData.TrainingPartition.Start = trainingIndizes.First(); clusteringData.TrainingPartition.End = trainingPartEnd; clusteringData.TestPartition.Start = trainingPartEnd; clusteringData.TestPartition.End = csvFileParser.Rows; clusteringData.Name = Path.GetFileName(path); return clusteringData; } protected override IClusteringProblemData ImportData(string path, DataAnalysisImportType type, TableFileParser csvFileParser) { List values = csvFileParser.Values; if (type.Shuffle) { values = Shuffle(values); } Dataset dataset = new Dataset(csvFileParser.VariableNames, values); // turn of input variables that are constant in the training partition var allowedInputVars = new List(); int trainingPartEnd = (csvFileParser.Rows * type.TrainingPercentage) / 100; var trainingIndizes = Enumerable.Range(0, trainingPartEnd); if (trainingIndizes.Count() >= 2) { foreach (var variableName in dataset.DoubleVariables) { if (dataset.GetDoubleValues(variableName, trainingIndizes).Range() > 0) allowedInputVars.Add(variableName); } } else { allowedInputVars.AddRange(dataset.DoubleVariables); } ClusteringProblemData clusteringData = new ClusteringProblemData(dataset, allowedInputVars); clusteringData.TrainingPartition.Start = 0; clusteringData.TrainingPartition.End = trainingPartEnd; clusteringData.TestPartition.Start = trainingPartEnd; clusteringData.TestPartition.End = csvFileParser.Rows; clusteringData.Name = Path.GetFileName(path); return clusteringData; } } }