#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.RealVectorEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Optimization.Operators;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.Instances;
namespace HeuristicLab.Problems.TestFunctions {
[Item("Test Function (single-objective)", "Test function with real valued inputs and a single objective.")]
[StorableClass]
[Creatable(CreatableAttribute.Categories.Problems, Priority = 90)]
public sealed class SingleObjectiveTestFunctionProblem :
SingleObjectiveProblem,
IProblemInstanceConsumer {
public override bool Maximization {
get { return Parameters.ContainsKey("TestFunction") && TestFunction.Maximization; }
}
#region Parameter Properties
private IFixedValueParameter ProblemSizeParameter {
get { return (IFixedValueParameter)Parameters["ProblemSize"]; }
}
private IValueParameter BoundsParameter {
get { return (IValueParameter)Parameters["Bounds"]; }
}
public OptionalValueParameter BestKnownSolutionParameter {
get { return (OptionalValueParameter)Parameters["BestKnownSolution"]; }
}
public IValueParameter TestFunctionParameter {
get { return (IValueParameter)Parameters["TestFunction"]; }
}
#endregion
#region Properties
public int ProblemSize {
get { return ProblemSizeParameter.Value.Value; }
set { ProblemSizeParameter.Value.Value = value; }
}
public DoubleMatrix Bounds {
get { return BoundsParameter.Value; }
set { BoundsParameter.Value = value; }
}
public ISingleObjectiveTestFunction TestFunction {
get { return TestFunctionParameter.Value; }
set { TestFunctionParameter.Value = value; }
}
private BestSingleObjectiveTestFunctionSolutionAnalyzer BestSingleObjectiveTestFunctionSolutionAnalyzer {
get { return Operators.OfType().FirstOrDefault(); }
}
#endregion
[StorableConstructor]
private SingleObjectiveTestFunctionProblem(bool deserializing) : base(deserializing) { }
private SingleObjectiveTestFunctionProblem(SingleObjectiveTestFunctionProblem original, Cloner cloner)
: base(original, cloner) {
RegisterEventHandlers();
}
public SingleObjectiveTestFunctionProblem()
: base(new RealVectorEncoding("Point")) {
Parameters.Add(new FixedValueParameter("ProblemSize", "The dimensionality of the problem instance (number of variables in the function).", new IntValue(2)));
Parameters.Add(new ValueParameter("Bounds", "The bounds of the solution given as either one line for all variables or a line for each variable. The first column specifies lower bound, the second upper bound.", new DoubleMatrix(new double[,] { { -100, 100 } })));
Parameters.Add(new OptionalValueParameter("BestKnownSolution", "The best known solution for this test function instance."));
Parameters.Add(new ValueParameter("TestFunction", "The function that is to be optimized.", new Ackley()));
Encoding.LengthParameter = ProblemSizeParameter;
Encoding.BoundsParameter = BoundsParameter;
BestKnownQuality = TestFunction.BestKnownQuality;
InitializeOperators();
RegisterEventHandlers();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SingleObjectiveTestFunctionProblem(this, cloner);
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
RegisterEventHandlers();
}
private void RegisterEventHandlers() {
Evaluator.QualityParameter.ActualNameChanged += Evaluator_QualityParameter_ActualNameChanged;
TestFunctionParameter.ValueChanged += TestFunctionParameterOnValueChanged;
ProblemSizeParameter.Value.ValueChanged += ProblemSizeOnValueChanged;
BoundsParameter.ValueChanged += BoundsParameterOnValueChanged;
}
public override double Evaluate(RealVector individual, IRandom random) {
return TestFunction.Evaluate(individual);
}
#region Events
protected override void OnEncodingChanged() {
base.OnEncodingChanged();
Parameterize();
}
protected override void OnEvaluatorChanged() {
base.OnEvaluatorChanged();
Evaluator.QualityParameter.ActualNameChanged += Evaluator_QualityParameter_ActualNameChanged;
Parameterize();
}
private void Evaluator_QualityParameter_ActualNameChanged(object sender, EventArgs e) {
Parameterize();
}
private void TestFunctionParameterOnValueChanged(object sender, EventArgs eventArgs) {
var problemSizeChange = ProblemSize < TestFunction.MinimumProblemSize
|| ProblemSize > TestFunction.MaximumProblemSize;
if (problemSizeChange) {
ProblemSize = Math.Max(TestFunction.MinimumProblemSize, Math.Min(ProblemSize, TestFunction.MaximumProblemSize));
}
BestKnownQuality = TestFunction.BestKnownQuality;
Bounds = (DoubleMatrix)TestFunction.Bounds.Clone();
var bestSolution = TestFunction.GetBestKnownSolution(ProblemSize);
BestKnownSolutionParameter.Value = bestSolution;
OnReset();
}
private void ProblemSizeOnValueChanged(object sender, EventArgs eventArgs) {
if (ProblemSize < TestFunction.MinimumProblemSize
|| ProblemSize > TestFunction.MaximumProblemSize)
ProblemSize = Math.Min(TestFunction.MaximumProblemSize, Math.Max(TestFunction.MinimumProblemSize, ProblemSize));
}
private void BoundsParameterOnValueChanged(object sender, EventArgs eventArgs) {
Parameterize();
}
#endregion
#region Helpers
private void InitializeOperators() {
Operators.Add(new SingleObjectiveTestFunctionImprovementOperator());
Operators.Add(new SingleObjectiveTestFunctionPathRelinker());
Operators.Add(new SingleObjectiveTestFunctionSimilarityCalculator());
Operators.Add(new QualitySimilarityCalculator());
Operators.Add(new NoSimilarityCalculator());
Operators.Add(new AdditiveMoveEvaluator());
Operators.Add(new BestSingleObjectiveTestFunctionSolutionAnalyzer());
Operators.Add(new PopulationSimilarityAnalyzer(Operators.OfType()));
Parameterize();
}
private void Parameterize() {
var operators = new List();
if (BestSingleObjectiveTestFunctionSolutionAnalyzer != null) {
operators.Add(BestSingleObjectiveTestFunctionSolutionAnalyzer);
BestSingleObjectiveTestFunctionSolutionAnalyzer.QualityParameter.ActualName = Evaluator.QualityParameter.ActualName;
BestSingleObjectiveTestFunctionSolutionAnalyzer.BestKnownQualityParameter.ActualName = BestKnownQualityParameter.Name;
BestSingleObjectiveTestFunctionSolutionAnalyzer.BestKnownSolutionParameter.ActualName = BestKnownSolutionParameter.Name;
BestSingleObjectiveTestFunctionSolutionAnalyzer.MaximizationParameter.ActualName = MaximizationParameter.Name;
BestSingleObjectiveTestFunctionSolutionAnalyzer.TestFunctionParameter.ActualName = TestFunctionParameter.Name;
}
foreach (var op in Operators.OfType()) {
operators.Add(op);
op.QualityParameter.ActualName = Evaluator.QualityParameter.ActualName;
op.QualityParameter.Hidden = true;
foreach (var movOp in Encoding.Operators.OfType())
movOp.MoveQualityParameter.ActualName = op.MoveQualityParameter.ActualName;
}
foreach (var op in Operators.OfType()) {
op.MaximizationParameter.ActualName = MaximizationParameter.Name;
op.MaximizationParameter.Hidden = true;
}
foreach (var op in Operators.OfType()) {
operators.Add(op);
op.SolutionParameter.ActualName = Encoding.Name;
op.SolutionParameter.Hidden = true;
}
foreach (var op in Operators.OfType()) {
operators.Add(op);
op.SolutionVariableName = Encoding.Name;
op.QualityVariableName = Evaluator.QualityParameter.ActualName;
op.Bounds = Bounds;
}
if (operators.Count > 0) Encoding.ConfigureOperators(operators);
}
#endregion
public void Load(SOTFData data) {
Name = data.Name;
Description = data.Description;
TestFunction = data.TestFunction;
}
}
}