#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.Optimization; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Common; using HeuristicLab.Parameters; using HeuristicLab.Data; using HeuristicLab.Problems.Scheduling.Encodings; namespace HeuristicLab.Problems.Scheduling.Analyzers { [Item("BestSchedulingSolutionAnalyzer", "An operator for analyzing the best solution of Scheduling Problems given in schedule-representation.")] [StorableClass] public sealed class BestSchedulingSolutionAnalyzer : JSSPOperator, IAnalyzer, IStochasticOperator { [StorableConstructor] private BestSchedulingSolutionAnalyzer(bool deserializing) : base(deserializing) { } private BestSchedulingSolutionAnalyzer(BestSchedulingSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new BestSchedulingSolutionAnalyzer(this, cloner); } public ILookupParameter RandomParameter { get { return (LookupParameter)Parameters["Random"]; } } public IRandom Random { get { return RandomParameter.ActualValue; } } public LookupParameter MaximizationParameter { get { return (LookupParameter)Parameters["Maximization"]; } } public ScopeTreeLookupParameter QualityParameter { get { return (ScopeTreeLookupParameter)Parameters["Quality"]; } } public LookupParameter BestSolutionParameter { get { return (LookupParameter)Parameters["BestSolution"]; } } public ValueLookupParameter ResultsParameter { get { return (ValueLookupParameter)Parameters["Results"]; } } public LookupParameter BestKnownQualityParameter { get { return (LookupParameter)Parameters["BestKnownQuality"]; } } public LookupParameter BestKnownSolutionParameter { get { return (LookupParameter)Parameters["BestKnownSolution"]; } } public ScopeTreeLookupParameter SchedulingSolutionParameter { get { return (ScopeTreeLookupParameter)Parameters["DecodedSchedulingSolution"]; } } public BestSchedulingSolutionAnalyzer () { Parameters.Add(new LookupParameter("Random", "The pseudo random number generator.")); Parameters.Add(new LookupParameter("Maximization", "True if the problem is a maximization problem.")); Parameters.Add(new ScopeTreeLookupParameter("Quality", "The qualities of the JSSP solutions which should be analyzed.")); Parameters.Add(new ScopeTreeLookupParameter("DecodedSchedulingSolution", "The solutions from which the best solution has to be chosen from.")); Parameters.Add(new LookupParameter("BestSolution", "The best JSSP solution.")); Parameters.Add(new ValueLookupParameter("Results", "The result collection where the best JSSP solution should be stored.")); Parameters.Add(new LookupParameter("BestKnownQuality", "The quality of the best known solution of this JSSP instance.")); Parameters.Add(new LookupParameter("BestKnownSolution", "The best known solution of this JSSP instance.")); } public override IOperation Apply() { ItemList jobs = Jobs; ItemArray qualities = QualityParameter.ActualValue; ItemArray solutions = SchedulingSolutionParameter.ActualValue; ResultCollection results = ResultsParameter.ActualValue; bool max = MaximizationParameter.ActualValue.Value; DoubleValue bestKnownQuality = BestKnownQualityParameter.ActualValue; int i = -1; if (!max) i = qualities.Select((x, index) => new { index, x.Value }).OrderBy(x => x.Value).First().index; else i = qualities.Select((x, index) => new { index, x.Value }).OrderByDescending(x => x.Value).First().index; if (bestKnownQuality == null || max && qualities[i].Value > bestKnownQuality.Value || !max && qualities[i].Value < bestKnownQuality.Value) { BestKnownQualityParameter.ActualValue = new DoubleValue(qualities[i].Value); BestKnownSolutionParameter.ActualValue = (Schedule)solutions[i].Clone(); } Schedule bestSolution = BestSolutionParameter.ActualValue; if (bestSolution == null) { bestSolution = (Schedule)solutions[i].Clone(); bestSolution.Quality.Value = qualities [i].Value; BestSolutionParameter.ActualValue = bestSolution; results.Add(new Result("Best Scheduling Solution", bestSolution)); } else { if (max && bestSolution.Quality.Value < qualities[i].Value || !max && bestSolution.Quality.Value > qualities[i].Value) { bestSolution = (Schedule)solutions[i].Clone(); bestSolution.Quality.Value = qualities[i].Value; } } return base.Apply(); } } }