#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Diagnostics; using System.Linq; using HeuristicLab.Random; using Microsoft.VisualStudio.TestTools.UnitTesting; namespace HeuristicLab.Problems.DataAnalysis.Tests { [TestClass] public class OnlineCalculatorPerformanceTest { private const int Rows = 5000; private const int Columns = 2; private const int Repetitions = 10000; private TestContext testContextInstance; /// ///Gets or sets the test context which provides ///information about and functionality for the current test run. /// public TestContext TestContext { get { return testContextInstance; } set { testContextInstance = value; } } [TestMethod] public void OnlineAccuracyCalculatorPerformanceTest() { TestCalculatorPerfomance(OnlineAccuracyCalculator.Calculate); } [TestMethod] public void OnlineCovarianceCalculatorPerformanceTest() { TestCalculatorPerfomance(OnlineCovarianceCalculator.Calculate); } [TestMethod] public void OnlineMeanAbsolutePercentageErrorCalculatorPerformanceTest() { TestCalculatorPerfomance(OnlineMeanAbsolutePercentageErrorCalculator.Calculate); } [TestMethod] public void OnlineMeanSquaredErrorCalculatorPerformanceTest() { TestCalculatorPerfomance(OnlineMeanSquaredErrorCalculator.Calculate); } [TestMethod] public void OnlineNormalizedMeanSquaredErrorCalculatorPerformanceTest() { TestCalculatorPerfomance(OnlineNormalizedMeanSquaredErrorCalculator.Calculate); } [TestMethod] public void OnlinePearsonsRSquaredCalculatorPerformanceTest() { TestCalculatorPerfomance(OnlinePearsonsRSquaredCalculator.Calculate); } private delegate double CalcateFunc(IEnumerable estimated, IEnumerable original, out OnlineCalculatorError errorState); private void TestCalculatorPerfomance(CalcateFunc calculateFunc) { var twister = new MersenneTwister(31415); var dataset = CreateRandomDataset(twister, Rows, Columns); OnlineCalculatorError errorState = OnlineCalculatorError.None; ; Stopwatch watch = new Stopwatch(); watch.Start(); for (int i = 0; i < Repetitions; i++) { double value = calculateFunc(dataset.GetEnumeratedVariableValues(0), dataset.GetEnumeratedVariableValues(1), out errorState); } Assert.AreEqual(errorState, OnlineCalculatorError.None); watch.Stop(); TestContext.WriteLine(""); TestContext.WriteLine("Calculated Rows per milisecond: {0}.", Rows * Repetitions * 1.0 / watch.ElapsedMilliseconds); } public static Dataset CreateRandomDataset(MersenneTwister twister, int rows, int columns) { double[,] data = new double[rows, columns]; for (int i = 0; i < rows; i++) { for (int j = 0; j < columns; j++) { data[i, j] = twister.NextDouble() * 2.0 - 1.0; } } IEnumerable variableNames = new string[] { "y" }.Concat(Enumerable.Range(0, columns - 1).Select(x => "x" + x.ToString())); Dataset ds = new Dataset(variableNames, data); return ds; } } }