#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Encodings.ScheduleEncoding.ScheduleEncoding { [Item("DirectScheduleGTCrossover", "Represents a crossover using the GT-Algorithm to cross two direct schedule representations.")] [StorableClass] public class DirectScheduleGTCrossover : DirectScheduleCrossover { [StorableConstructor] protected DirectScheduleGTCrossover(bool deserializing) : base(deserializing) { } protected DirectScheduleGTCrossover(DirectScheduleGTCrossover original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new DirectScheduleGTCrossover(this, cloner); } public DirectScheduleGTCrossover() : base() { Parameters.Add(new LookupParameter("MutationProbability", "The probability that the mutation operator is applied on a solution.")); } private LookupParameter MutationProbabilityParameter { get { return (LookupParameter)Parameters["MutationProbability"]; } } public static Schedule Apply(IRandom random, Schedule parent1, Schedule parent2, ItemList jobData, double mutProp) { Schedule child = new Schedule(parent1.Resources.Count); //Reset scheduled tasks in result foreach (Job j in jobData) { foreach (Task t in j.Tasks) { t.IsScheduled = false; } } //GT-Algorithm //STEP 0 - Compute a list of "earliest operations" ItemList earliestTasksList = GTAlgorithmUtils.GetEarliestNotScheduledTasks(jobData); while (earliestTasksList.Count > 0) { //STEP 1 - Get earliest not scheduled operation with minimal earliest completing time Task minimal = GTAlgorithmUtils.GetTaskWithMinimalEC(earliestTasksList, child); int conflictedResourceNr = minimal.ResourceNr; Resource conflictedResource = child.Resources[conflictedResourceNr]; //STEP 2 - Compute a conflict set of all operations that can be scheduled on the conflicted resource ItemList conflictSet = GTAlgorithmUtils.GetConflictSetForTask(minimal, earliestTasksList, jobData, child); //STEP 3 - Select a task from the conflict set int progressOnResource = conflictedResource.Tasks.Count; Task selectedTask = null; if (random.Next(100) < mutProp) { //Mutation selectedTask = conflictSet[random.Next(conflictSet.Count)]; } else { //Crossover selectedTask = SelectTaskFromConflictSet(conflictSet, ((random.Next(2) == 0) ? parent1 : parent2), conflictedResourceNr, progressOnResource); } //STEP 4 - Add the selected task to the current schedule selectedTask.IsScheduled = true; double startTime = GTAlgorithmUtils.ComputeEarliestStartTime(selectedTask, child); child.ScheduleTask(selectedTask.ResourceNr, startTime, selectedTask.Duration, selectedTask.JobNr); //STEP 5 - Back to STEP 1 earliestTasksList = GTAlgorithmUtils.GetEarliestNotScheduledTasks(jobData); } return child; } private static Task SelectTaskFromConflictSet(ItemList conflictSet, Schedule usedParent, int conflictedResourceNr, int progressOnResource) { //Apply Crossover foreach (ScheduledTask st in usedParent.Resources[conflictedResourceNr].Tasks) { foreach (Task t in conflictSet) { if (st.JobNr == t.JobNr) return t; } } return conflictSet[0]; } public override Schedule Cross(IRandom random, Schedule parent1, Schedule parent2) { ItemList jobData = (ItemList)JobDataParameter.ActualValue.Clone(); PercentValue mutProp = MutationProbabilityParameter.ActualValue; return Apply(random, parent1, parent2, jobData, mutProp.Value); } } }