#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Selection {
///
/// A linear rank selection operator which considers the rank based on a single double quality value for selection.
///
[Item("LinearRankSelector", "A linear rank selection operator which considers the rank based on a single double quality value for selection.")]
[StorableClass]
public sealed class LinearRankSelector : StochasticSingleObjectiveSelector, ISingleObjectiveSelector {
[StorableConstructor]
private LinearRankSelector(bool deserializing) : base(deserializing) { }
private LinearRankSelector(LinearRankSelector original, Cloner cloner)
: base(original, cloner) {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new LinearRankSelector(this, cloner);
}
public LinearRankSelector() : base() { }
protected override IScope[] Select(List scopes) {
int count = NumberOfSelectedSubScopesParameter.ActualValue.Value;
bool copy = CopySelectedParameter.Value.Value;
IRandom random = RandomParameter.ActualValue;
bool maximization = MaximizationParameter.ActualValue.Value;
ItemArray qualities = QualityParameter.ActualValue;
IScope[] selected = new IScope[count];
// create a list for each scope that contains the scope's index in the original scope list and its lots
var temp = qualities.Select((x, index) => new { index, x.Value });
if (maximization)
temp = temp.OrderBy(x => x.Value);
else
temp = temp.OrderByDescending(x => x.Value);
var list = temp.Select((x, index) => new { x.index, lots = index + 1 }).ToList();
int lotSum = list.Count * (list.Count + 1) / 2;
for (int i = 0; i < count; i++) {
int selectedLot = random.Next(lotSum) + 1;
int j = 0;
int currentLot = list[j].lots;
while (currentLot < selectedLot) {
j++;
currentLot += list[j].lots;
}
if (copy)
selected[i] = (IScope)scopes[list[j].index].Clone();
else {
selected[i] = scopes[list[j].index];
scopes[list[j].index] = null;
lotSum -= list[j].lots;
list.RemoveAt(j);
}
}
if (!copy) scopes.RemoveAll(x => x == null);
return selected;
}
}
}