#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Problems.DataAnalysis.OnlineCalculators;
namespace HeuristicLab.Problems.DataAnalysis {
public class ClassificationPerformanceMeasuresCalculator {
public ClassificationPerformanceMeasuresCalculator(string positiveClassName, double positiveClassValue) {
this.positiveClassName = positiveClassName;
this.positiveClassValue = positiveClassValue;
Reset();
}
#region Properties
private int truePositiveCount, falsePositiveCount, trueNegativeCount, falseNegativeCount;
private readonly string positiveClassName;
public string PositiveClassName {
get { return positiveClassName; }
}
private readonly double positiveClassValue;
public double PositiveClassValue {
get { return positiveClassValue; }
}
public double TruePositiveRate {
get {
double divisor = truePositiveCount + falseNegativeCount;
return divisor.IsAlmost(0) ? double.NaN : truePositiveCount / divisor;
}
}
public double TrueNegativeRate {
get {
double divisor = falsePositiveCount + trueNegativeCount;
return divisor.IsAlmost(0) ? double.NaN : trueNegativeCount / divisor;
}
}
public double PositivePredictiveValue {
get {
double divisor = truePositiveCount + falsePositiveCount;
return divisor.IsAlmost(0) ? double.NaN : truePositiveCount / divisor;
}
}
public double NegativePredictiveValue {
get {
double divisor = trueNegativeCount + falseNegativeCount;
return divisor.IsAlmost(0) ? double.NaN : trueNegativeCount / divisor;
}
}
public double FalsePositiveRate {
get {
double divisor = falsePositiveCount + trueNegativeCount;
return divisor.IsAlmost(0) ? double.NaN : falsePositiveCount / divisor;
}
}
public double FalseDiscoveryRate {
get {
double divisor = falsePositiveCount + truePositiveCount;
return divisor.IsAlmost(0) ? double.NaN : falsePositiveCount / divisor;
}
}
private OnlineCalculatorError errorState;
public OnlineCalculatorError ErrorState {
get { return errorState; }
}
#endregion
public void Reset() {
truePositiveCount = 0;
falseNegativeCount = 0;
trueNegativeCount = 0;
falseNegativeCount = 0;
errorState = OnlineCalculatorError.InsufficientElementsAdded;
}
public void Add(double originalClassValue, double estimatedClassValue) {
// ignore cases where original is NaN completely
if (double.IsNaN(originalClassValue)) return;
if (originalClassValue.IsAlmost(positiveClassValue)
|| estimatedClassValue.IsAlmost(positiveClassValue)) { //positive class/positive class estimation
if (estimatedClassValue.IsAlmost(originalClassValue)) {
truePositiveCount++;
} else {
if (estimatedClassValue.IsAlmost(positiveClassValue)) //misclassification of the negative class
falsePositiveCount++;
else //misclassification of the positive class
falseNegativeCount++;
}
} else { //negative class/negative class estimation
//In a multiclass classification all misclassifications of the negative class
//will be treated as true negatives except on positive class estimations
trueNegativeCount++;
}
errorState = OnlineCalculatorError.None; // number of (non-NaN) samples >= 1
}
public void Calculate(IEnumerable originalClassValues, IEnumerable estimatedClassValues) {
IEnumerator originalEnumerator = originalClassValues.GetEnumerator();
IEnumerator estimatedEnumerator = estimatedClassValues.GetEnumerator();
// always move forward both enumerators (do not use short-circuit evaluation!)
while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
double original = originalEnumerator.Current;
double estimated = estimatedEnumerator.Current;
Add(original, estimated);
if (ErrorState != OnlineCalculatorError.None) break;
}
// check if both enumerators are at the end to make sure both enumerations have the same length
if (ErrorState == OnlineCalculatorError.None && (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext())) {
throw new ArgumentException("Number of elements in originalValues and estimatedValues enumerations doesn't match.");
}
errorState = ErrorState;
}
}
}