#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.IO; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis { [StorableClass] [Item("ClusteringProblemData", "Represents an item containing all data defining a clustering problem.")] public sealed class ClusteringProblemData : DataAnalysisProblemData, IClusteringProblemData, IStorableContent { public string Filename { get; set; } #region default data private static double[,] kozaF1 = new double[,] { {2.017885919, -1.449165046}, {1.30060506, -1.344523885}, {1.147134798, -1.317989331}, {0.877182504, -1.266142284}, {0.852562452, -1.261020794}, {0.431095788, -1.158793317}, {0.112586002, -1.050908405}, {0.04594507, -1.021989402}, {0.042572879, -1.020438113}, {-0.074027291, -0.959859562}, {-0.109178553, -0.938094706}, {-0.259721109, -0.803635355}, {-0.272991057, -0.387519561}, {-0.161978191, -0.193611001}, {-0.102489983, -0.114215349}, {-0.01469968, -0.014918985}, {-0.008863365, -0.008942626}, {0.026751057, 0.026054094}, {0.166922436, 0.14309643}, {0.176953808, 0.1504144}, {0.190233418, 0.159916534}, {0.199800708, 0.166635331}, {0.261502822, 0.207600348}, {0.30182879, 0.232370249}, {0.83763905, 0.468046718} }; private static Dataset defaultDataset; private static IEnumerable defaultAllowedInputVariables; static ClusteringProblemData() { defaultDataset = new Dataset(new string[] { "y", "x" }, kozaF1); defaultDataset.Name = "Fourth-order Polynomial Function Benchmark Dataset"; defaultDataset.Description = "f(x) = x^4 + x^3 + x^2 + x^1"; defaultAllowedInputVariables = new List() { "x", "y" }; } #endregion [StorableConstructor] private ClusteringProblemData(bool deserializing) : base(deserializing) { } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { } private ClusteringProblemData(ClusteringProblemData original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new ClusteringProblemData(this, cloner); } public ClusteringProblemData() : this(defaultDataset, defaultAllowedInputVariables) { } public ClusteringProblemData(Dataset dataset, IEnumerable allowedInputVariables) : base(dataset, allowedInputVariables) { } #region Import from file public static ClusteringProblemData ImportFromFile(string fileName) { TableFileParser csvFileParser = new TableFileParser(); csvFileParser.Parse(fileName); Dataset dataset = new Dataset(csvFileParser.VariableNames, csvFileParser.Values); dataset.Name = Path.GetFileName(fileName); ClusteringProblemData problemData = new ClusteringProblemData(dataset, dataset.DoubleVariables); problemData.Name = "Data imported from " + Path.GetFileName(fileName); return problemData; } #endregion } }