#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using HeuristicLab.Data; namespace HeuristicLab.Problems.DataAnalysis.Benchmarks { public class NguyenFunctionTwo : RegressionToyBenchmark { public NguyenFunctionTwo() { Name = "Nguyen F2 = x^4 + x^3 + x^2 + x"; Description = "Paper: Semantically-based Crossover in Genetic Programming: Application to Real-valued Symbolic Regression" + Environment.NewLine + "Authors: Nguyen Quang Uy · Nguyen Xuan Hoai · Michael O’Neill · R.I. McKay · Edgar Galvan-Lopez" + Environment.NewLine + "Function: F2 = x^4 + x^3 + x^2 + x" + Environment.NewLine + "Fitcases: 20 random points ⊆ [-1, 1]" + Environment.NewLine + "Non-terminals: +, -, *, /, sin, cos, exp, log (protected version)" + Environment.NewLine + "Terminals: X, 1 for single variable problems, and X, Y for bivariable problems"; targetVariable = "Y"; inputVariables = new List() { "X" }; trainingPartition = new IntRange(0, 20); testPartition = new IntRange(250, 350); } protected override List GenerateTarget(List> data) { double x; List results = new List(); for (int i = 0; i < data[0].Count; i++) { x = data[0][i]; results.Add(Math.Pow(x, 4) + Math.Pow(x, 3) + Math.Pow(x, 2) + x); } return results; } protected override List> GenerateInput() { List> dataList = new List>(); DoubleRange range = new DoubleRange(-1, 1); dataList.Add(RegressionBenchmark.GenerateUniformDistributedValues(500, range)); return dataList; } } }