#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Linq;
using System.Threading;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression {
[Item("Kernel Ridge Regression", "Kernelized ridge regression e.g. for radial basis function (RBF) regression.")]
[Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 100)]
[StorableClass]
public sealed class KernelRidgeRegression : BasicAlgorithm {
private const string SolutionResultName = "Kernel ridge regression solution";
public override bool SupportsPause {
get { return false; }
}
public override Type ProblemType {
get { return typeof(IRegressionProblem); }
}
public new IRegressionProblem Problem {
get { return (IRegressionProblem)base.Problem; }
set { base.Problem = value; }
}
#region parameter names
private const string KernelParameterName = "Kernel";
private const string ScaleInputVariablesParameterName = "ScaleInputVariables";
private const string LambdaParameterName = "LogLambda";
private const string BetaParameterName = "Beta";
#endregion
#region parameter properties
public ValueParameter KernelParameter {
get { return (ValueParameter)Parameters[KernelParameterName]; }
}
public IFixedValueParameter ScaleInputVariablesParameter {
get { return (IFixedValueParameter)Parameters[ScaleInputVariablesParameterName]; }
}
public IFixedValueParameter LogLambdaParameter {
get { return (IFixedValueParameter)Parameters[LambdaParameterName]; }
}
public IFixedValueParameter BetaParameter {
get { return (IFixedValueParameter)Parameters[BetaParameterName]; }
}
#endregion
#region properties
public IKernel Kernel {
get { return KernelParameter.Value; }
}
public bool ScaleInputVariables {
get { return ScaleInputVariablesParameter.Value.Value; }
set { ScaleInputVariablesParameter.Value.Value = value; }
}
public double LogLambda {
get { return LogLambdaParameter.Value.Value; }
set { LogLambdaParameter.Value.Value = value; }
}
public double Beta {
get { return BetaParameter.Value.Value; }
set { BetaParameter.Value.Value = value; }
}
#endregion
[StorableConstructor]
private KernelRidgeRegression(bool deserializing) : base(deserializing) { }
private KernelRidgeRegression(KernelRidgeRegression original, Cloner cloner)
: base(original, cloner) {
}
public KernelRidgeRegression() {
Problem = new RegressionProblem();
Parameters.Add(new ValueParameter(KernelParameterName, "The kernel", new GaussianKernel()));
Parameters.Add(new FixedValueParameter(ScaleInputVariablesParameterName, "Set to true if the input variables should be scaled to the interval [0..1]", new BoolValue(true)));
Parameters.Add(new FixedValueParameter(LambdaParameterName, "The log10-transformed weight for the regularization term lambda [-inf..+inf]. Small values produce more complex models, large values produce models with larger errors. Set to very small value (e.g. -1.0e15) for almost exact approximation", new DoubleValue(-2)));
Parameters.Add(new FixedValueParameter(BetaParameterName, "The beta parameter for the kernel", new DoubleValue(2)));
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new KernelRidgeRegression(this, cloner);
}
protected override void Run(CancellationToken cancellationToken) {
double rmsError, looCvRMSE;
var kernel = Kernel;
kernel.Beta = Beta;
var solution = CreateRadialBasisRegressionSolution(Problem.ProblemData, kernel, Math.Pow(10, LogLambda), ScaleInputVariables, out rmsError, out looCvRMSE);
Results.Add(new Result(SolutionResultName, "The kernel ridge regression solution.", solution));
Results.Add(new Result("RMSE (test)", "The root mean squared error of the solution on the test set.", new DoubleValue(rmsError)));
Results.Add(new Result("RMSE (LOO-CV)", "The leave-one-out-cross-validation root mean squared error", new DoubleValue(looCvRMSE)));
}
public static IRegressionSolution CreateRadialBasisRegressionSolution(IRegressionProblemData problemData, ICovarianceFunction kernel, double lambda, bool scaleInputs, out double rmsError, out double looCvRMSE) {
var model = new KernelRidgeRegressionModel(problemData.Dataset, problemData.TargetVariable, problemData.AllowedInputVariables, problemData.TrainingIndices, scaleInputs, kernel, lambda);
rmsError = double.NaN;
if (problemData.TestIndices.Any()) {
rmsError = Math.Sqrt(model.GetEstimatedValues(problemData.Dataset, problemData.TestIndices)
.Zip(problemData.TargetVariableTestValues, (a, b) => (a - b) * (a - b))
.Average());
}
var solution = model.CreateRegressionSolution((IRegressionProblemData)problemData.Clone());
solution.Model.Name = "Kernel ridge regression model";
solution.Name = SolutionResultName;
looCvRMSE = model.LooCvRMSE;
return solution;
}
}
}