#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.DataAnalysis {
///
/// 1R classification algorithm.
///
[Item("OneR Classification", "A simple classification algorithm the searches the best single-variable split (does not support categorical features correctly). See R.C. Holte (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning. 11:63-91.")]
[StorableClass]
public sealed class OneR : FixedDataAnalysisAlgorithm {
public IValueParameter MinBucketSizeParameter {
get { return (IValueParameter)Parameters["MinBucketSize"]; }
}
[StorableConstructor]
private OneR(bool deserializing) : base(deserializing) { }
private OneR(OneR original, Cloner cloner)
: base(original, cloner) { }
public OneR()
: base() {
Parameters.Add(new ValueParameter("MinBucketSize", "Minimum size of a bucket for numerical values. (Except for the rightmost bucket)", new IntValue(6)));
Problem = new ClassificationProblem();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new OneR(this, cloner);
}
protected override void Run(CancellationToken cancellationToken) {
var solution = CreateOneRSolution(Problem.ProblemData, MinBucketSizeParameter.Value.Value);
Results.Add(new Result("OneR solution", "The 1R classifier.", solution));
}
public static IClassificationSolution CreateOneRSolution(IClassificationProblemData problemData, int minBucketSize = 6) {
var classValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices);
var model1 = FindBestDoubleVariableModel(problemData, minBucketSize);
var model2 = FindBestFactorModel(problemData);
if (model1 == null && model2 == null) throw new InvalidProgramException("Could not create OneR solution");
else if (model1 == null) return new OneFactorClassificationSolution(model2, (IClassificationProblemData)problemData.Clone());
else if (model2 == null) return new OneRClassificationSolution(model1, (IClassificationProblemData)problemData.Clone());
else {
var model1EstimatedValues = model1.GetEstimatedClassValues(problemData.Dataset, problemData.TrainingIndices);
var model1NumCorrect = classValues.Zip(model1EstimatedValues, (a, b) => a.IsAlmost(b)).Count(e => e);
var model2EstimatedValues = model2.GetEstimatedClassValues(problemData.Dataset, problemData.TrainingIndices);
var model2NumCorrect = classValues.Zip(model2EstimatedValues, (a, b) => a.IsAlmost(b)).Count(e => e);
if (model1NumCorrect > model2NumCorrect) {
return new OneRClassificationSolution(model1, (IClassificationProblemData)problemData.Clone());
} else {
return new OneFactorClassificationSolution(model2, (IClassificationProblemData)problemData.Clone());
}
}
}
private static OneRClassificationModel FindBestDoubleVariableModel(IClassificationProblemData problemData, int minBucketSize = 6) {
var bestClassified = 0;
List bestSplits = null;
string bestVariable = string.Empty;
double bestMissingValuesClass = double.NaN;
var classValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices);
var allowedInputVariables = problemData.AllowedInputVariables.Where(problemData.Dataset.VariableHasType);
if (!allowedInputVariables.Any()) return null;
foreach (var variable in allowedInputVariables) {
var inputValues = problemData.Dataset.GetDoubleValues(variable, problemData.TrainingIndices);
var samples = inputValues.Zip(classValues, (i, v) => new Sample(i, v)).OrderBy(s => s.inputValue);
var missingValuesDistribution = samples
.Where(s => double.IsNaN(s.inputValue)).GroupBy(s => s.classValue)
.ToDictionary(s => s.Key, s => s.Count())
.MaxItems(s => s.Value)
.FirstOrDefault();
//calculate class distributions for all distinct inputValues
List> classDistributions = new List>();
List thresholds = new List();
double lastValue = double.NaN;
foreach (var sample in samples.Where(s => !double.IsNaN(s.inputValue))) {
if (sample.inputValue > lastValue || double.IsNaN(lastValue)) {
if (!double.IsNaN(lastValue)) thresholds.Add((lastValue + sample.inputValue) / 2);
lastValue = sample.inputValue;
classDistributions.Add(new Dictionary());
foreach (var classValue in problemData.ClassValues)
classDistributions[classDistributions.Count - 1][classValue] = 0;
}
classDistributions[classDistributions.Count - 1][sample.classValue]++;
}
thresholds.Add(double.PositiveInfinity);
var distribution = classDistributions[0];
var threshold = thresholds[0];
var splits = new List();
for (int i = 1; i < classDistributions.Count; i++) {
var samplesInSplit = distribution.Max(d => d.Value);
//join splits if there are too few samples in the split or the distributions has the same maximum class value as the current split
if (samplesInSplit < minBucketSize ||
classDistributions[i].MaxItems(d => d.Value).Select(d => d.Key).Contains(
distribution.MaxItems(d => d.Value).Select(d => d.Key).First())) {
foreach (var classValue in classDistributions[i])
distribution[classValue.Key] += classValue.Value;
threshold = thresholds[i];
} else {
splits.Add(new Split(threshold, distribution.MaxItems(d => d.Value).Select(d => d.Key).First()));
distribution = classDistributions[i];
threshold = thresholds[i];
}
}
splits.Add(new Split(double.PositiveInfinity, distribution.MaxItems(d => d.Value).Select(d => d.Key).First()));
int correctClassified = 0;
int splitIndex = 0;
foreach (var sample in samples.Where(s => !double.IsNaN(s.inputValue))) {
while (sample.inputValue >= splits[splitIndex].thresholdValue)
splitIndex++;
correctClassified += sample.classValue.IsAlmost(splits[splitIndex].classValue) ? 1 : 0;
}
correctClassified += missingValuesDistribution.Value;
if (correctClassified > bestClassified) {
bestClassified = correctClassified;
bestSplits = splits;
bestVariable = variable;
bestMissingValuesClass = missingValuesDistribution.Value == 0 ? double.NaN : missingValuesDistribution.Key;
}
}
//remove neighboring splits with the same class value
for (int i = 0; i < bestSplits.Count - 1; i++) {
if (bestSplits[i].classValue.IsAlmost(bestSplits[i + 1].classValue)) {
bestSplits.Remove(bestSplits[i]);
i--;
}
}
var model = new OneRClassificationModel(problemData.TargetVariable, bestVariable,
bestSplits.Select(s => s.thresholdValue).ToArray(),
bestSplits.Select(s => s.classValue).ToArray(), bestMissingValuesClass);
return model;
}
private static OneFactorClassificationModel FindBestFactorModel(IClassificationProblemData problemData) {
var classValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices);
var defaultClass = FindMostFrequentClassValue(classValues);
// only select string variables
var allowedInputVariables = problemData.AllowedInputVariables.Where(problemData.Dataset.VariableHasType);
if (!allowedInputVariables.Any()) return null;
OneFactorClassificationModel bestModel = null;
var bestModelNumCorrect = 0;
foreach (var variable in allowedInputVariables) {
var variableValues = problemData.Dataset.GetStringValues(variable, problemData.TrainingIndices);
var groupedClassValues = variableValues
.Zip(classValues, (v, c) => new KeyValuePair(v, c))
.GroupBy(kvp => kvp.Key)
.ToDictionary(g => g.Key, g => FindMostFrequentClassValue(g.Select(kvp => kvp.Value)));
var model = new OneFactorClassificationModel(problemData.TargetVariable, variable,
groupedClassValues.Select(kvp => kvp.Key).ToArray(), groupedClassValues.Select(kvp => kvp.Value).ToArray(), defaultClass);
var modelEstimatedValues = model.GetEstimatedClassValues(problemData.Dataset, problemData.TrainingIndices);
var modelNumCorrect = classValues.Zip(modelEstimatedValues, (a, b) => a.IsAlmost(b)).Count(e => e);
if (modelNumCorrect > bestModelNumCorrect) {
bestModelNumCorrect = modelNumCorrect;
bestModel = model;
}
}
return bestModel;
}
private static double FindMostFrequentClassValue(IEnumerable classValues) {
return classValues.GroupBy(c => c).OrderByDescending(g => g.Count()).Select(g => g.Key).First();
}
#region helper classes
private class Split {
public double thresholdValue;
public double classValue;
public Split(double thresholdValue, double classValue) {
this.thresholdValue = thresholdValue;
this.classValue = classValue;
}
}
private class Sample {
public double inputValue;
public double classValue;
public Sample(double inputValue, double classValue) {
this.inputValue = inputValue;
this.classValue = classValue;
}
}
#endregion
}
}