#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Analysis { [Item("PopulationDiversityMDSAnalyzer", "Transforms the population similarity HeatMap into coordinates by making use of multidimensional scaling.")] [StorableClass] public class PopulationDiversityMDSAnalyzer : SingleSuccessorOperator, IAnalyzer { public ILookupParameter ResultsParameter { get { return (ILookupParameter)Parameters["Results"]; } } public ILookupParameter PopulationDiversityAnalyzerResultsParameter { get { return (ILookupParameter)Parameters["PopulationDiversityAnalyzer Results"]; } } public ILookupParameter SolutionSimilaritiesParameter { get { return (ILookupParameter)Parameters["Solution Similarities"]; } } /*public ILookupParameter CoordinatesHistoryParameter { get { return (ILookupParameter)Parameters["CoordinatesHistory"]; } }*/ [StorableConstructor] protected PopulationDiversityMDSAnalyzer(bool deserializing) : base(deserializing) { } protected PopulationDiversityMDSAnalyzer(PopulationDiversityMDSAnalyzer original, Cloner cloner) : base(original, cloner) { } public PopulationDiversityMDSAnalyzer() { Parameters.Add(new LookupParameter("Results", "The results collection in which the population diversity analyzer injects its result collection.")); Parameters.Add(new LookupParameter("PopulationDiversityAnalyzer Results", "The result collection in which the diversity analyzer injects its results.")); Parameters.Add(new LookupParameter("Solution Similarities", "The HeatMap that stores the solution similarities.")); //Parameters.Add(new LookupParameter("CoordinatesHistory", "The history of the assigned coordinates.")); } public override IDeepCloneable Clone(Cloner cloner) { return new PopulationDiversityMDSAnalyzer(this, cloner); } public override IOperation Apply() { ResultCollection results = ResultsParameter.ActualValue; ResultCollection popDivResults = (results[PopulationDiversityAnalyzerResultsParameter.ActualName] as IResult).Value as ResultCollection; if (popDivResults == null) throw new InvalidOperationException("Results collection of population diversity analyzer cannot be found."); HeatMap similarites = (popDivResults[SolutionSimilaritiesParameter.ActualName] as IResult).Value as HeatMap; if (similarites == null) throw new InvalidOperationException("HeatMap cannot be found in the results collection of the population diversity analyzer."); if (similarites.Rows != similarites.Columns) throw new InvalidOperationException("HeatMap is not a square matrix."); CoordinatesHistory history = null; if (popDivResults.ContainsKey("MDS")) history = popDivResults["MDS"].Value as CoordinatesHistory; else { history = new CoordinatesHistory(); popDivResults.Add(new Result("MDS", history)); } int dimension = similarites.Rows; DoubleMatrix distances = new DoubleMatrix(dimension, dimension); for (int i = 0; i < dimension; i++) { for (int j = 0; j < dimension; j++) { if (i == j) continue; distances[i, j] = 1.0 - similarites[i, j]; } } double stress; DoubleMatrix coordinates = null; if (history.Count == 0) { coordinates = MultidimensionalScaling.MetricByDistance(distances, out stress); } else coordinates = MultidimensionalScaling.MetricByDistance(distances, out stress, history.Last().Clone() as DoubleMatrix); history.Add(coordinates); return base.Apply(); } } }