#region License Information
/* HeuristicLab
* Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Optimization;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.Programmable {
[Item("Single-objective Problem Definition Script", "Script that defines the parameter vector and evaluates the solution for a programmable problem.")]
[StorableClass]
public sealed class SingleObjectiveProblemScript : ProblemScript, ISingleObjectiveProblemDefinition, IStorableContent {
public string Filename { get; set; }
protected override string CodeTemplate {
get {
return @"using System;
using System.Linq;
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.PermutationEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Problems.Programmable;
public class CustomProblemDefinition : ProblemScriptBase, ISingleObjectiveProblemDefinition {
public bool IsMaximizationProblem { get { return false; } }
public CustomProblemDefinition() {
// Define the solution encoding which can also consist of multiple vectors, examples below
// Encoding = new BinaryEncoding(""b"", length: 5);
// Encoding = new IntegerEncoding(""i"", lenght: 5, min: 2, max: 14, step: 4);
// Encoding = new RealEncoding(""r"", length: 5, min: -1.0, max: 1.0);
// Encoding = new PermutationEncoding(""P"", length: 5, type: PermutationTypes.Absolute);
// Encoding = new MultiEncoding()
// .AddBinaryVector(""b"", length: 5)
// .AddIntegerVector(""i"", length: 5, min: 2, max: 14, step: 4)
// .AddRealVector(""r"", length: 5, min: -1.0, max: 1.0)
// .AddPermutation(""P"", length: 5, type: PermutationTypes.Absolute)
;
}
public override void Initialize() {
// when the definition is created here you can initialize variables in the variable store
}
public double Evaluate(IRandom random, Individual individual) {
var quality = 0.0;
// use vars.yourVariable to access variables in the variable store i.e. yourVariable
// quality = individual.RealVector(""r"").Sum(x => x * x);
return quality;
}
public void Analyze(Individual[] individuals, double[] qualities, ResultCollection results) {
// write or update results given the range of vectors and resulting qualities
// use e.g. vars.yourVariable to access variables in the variable store i.e. yourVariable
}
public override IEnumerable GetNeighbors(IRandom random, Individual individual) {
// Create new vectors, based on the given one that represent small changes
// This method is only called from move-based algorithms (LocalSearch, SimulatedAnnealing, etc.)
while (true) {
// this is not an infinite loop as only a finite amount of samples will be drawn
// it is possible to return a concrete amount of neighbors also
var neighbor = (Individual)individual.Clone();
//e.g. make a bit flip in a binary parameter
//var bIndex = random.Next(neighbor.BinaryVector(""b"").Length);
//neighbor.BinaryVector(""b"")[bIndex] = !neighbor.BinaryVector(""b"")[bIndex];
yield return neighbor;
}
}
// implement further classes and methods
}";
}
}
[StorableConstructor]
private SingleObjectiveProblemScript(bool deserializing) : base(deserializing) { }
private SingleObjectiveProblemScript(SingleObjectiveProblemScript original, Cloner cloner) : base(original, cloner) { }
public SingleObjectiveProblemScript() {
Code = CodeTemplate;
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SingleObjectiveProblemScript(this, cloner);
}
public new ISingleObjectiveProblemDefinition Instance {
get { return (ISingleObjectiveProblemDefinition)base.Instance; }
private set { base.Instance = value; }
}
protected override void OnInstanceChanged() {
OnProblemDefinitionChanged();
base.OnInstanceChanged();
}
bool ISingleObjectiveProblemDefinition.IsMaximizationProblem {
get { return Instance != null && Instance.IsMaximizationProblem; }
}
IEncoding IProblemDefinition.Encoding {
get { return Instance != null ? Instance.Encoding : null; }
}
double ISingleObjectiveProblemDefinition.Evaluate(IRandom random, Individual individual) {
return Instance.Evaluate(random, individual);
}
void ISingleObjectiveProblemDefinition.Analyze(Individual[] individuals, double[] qualities, ResultCollection results) {
Instance.Analyze(individuals, qualities, results);
}
IEnumerable IProblemDefinition.GetNeighbors(IRandom random, Individual individual) {
return Instance.GetNeighbors(random, individual);
}
public event EventHandler ProblemDefinitionChanged;
private void OnProblemDefinitionChanged() {
var handler = ProblemDefinitionChanged;
if (handler != null) handler(this, EventArgs.Empty);
}
}
}