1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using System.Threading;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Optimization;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 | using HeuristicLab.Random;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Encodings.BinaryVectorEncoding.LocalSearch {
|
---|
32 | [Item("Exhaustive Bitflip Local Search (binary)", "", ExcludeGenericTypeInfo = true)]
|
---|
33 | [StorableClass]
|
---|
34 | public class ExhaustiveBitflip<TProblem, TContext> : NamedItem, IBinaryLocalSearch<TContext>
|
---|
35 | where TProblem : class, ISingleObjectiveProblemDefinition<BinaryVectorEncoding, BinaryVector>, ISingleObjectiveProblem<BinaryVectorEncoding, BinaryVector> // need both, because one has Maximization, the other only the IParameter
|
---|
36 | where TContext : IProblemContext<TProblem, BinaryVectorEncoding, BinaryVector>,
|
---|
37 | ISingleObjectiveSolutionContext<BinaryVector>, IStochasticContext,
|
---|
38 | IEvaluatedSolutionsContext, ILongRunningOperationContext {
|
---|
39 |
|
---|
40 | public override bool CanChangeName {
|
---|
41 | get { return false; }
|
---|
42 | }
|
---|
43 | public override bool CanChangeDescription {
|
---|
44 | get { return false; }
|
---|
45 | }
|
---|
46 |
|
---|
47 | [StorableConstructor]
|
---|
48 | protected ExhaustiveBitflip(bool deserializing) : base(deserializing) { }
|
---|
49 | protected ExhaustiveBitflip(ExhaustiveBitflip<TProblem, TContext> original, Cloner cloner) : base(original, cloner) { }
|
---|
50 | public ExhaustiveBitflip() : base() {
|
---|
51 | name = ItemName;
|
---|
52 | description = ItemDescription;
|
---|
53 | }
|
---|
54 |
|
---|
55 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
56 | return new ExhaustiveBitflip<TProblem, TContext>(this, cloner);
|
---|
57 | }
|
---|
58 |
|
---|
59 | public void Optimize(TContext context) {
|
---|
60 | var quality = context.Solution.Fitness;
|
---|
61 | try {
|
---|
62 | var result = Search(context.Random, context.Solution.Solution, ref quality,
|
---|
63 | context.Problem.Maximization, context.Problem.Evaluate, context.CancellationToken);
|
---|
64 | context.IncEvaluatedSolutions(result.Item1);
|
---|
65 | var stepsContext = context as IImprovementStepsContext;
|
---|
66 | if (stepsContext != null)
|
---|
67 | stepsContext.ImprovementSteps = result.Item2;
|
---|
68 | } finally {
|
---|
69 | context.Solution.Fitness = quality;
|
---|
70 | }
|
---|
71 | }
|
---|
72 |
|
---|
73 | private static bool IsBetter(bool maximization, double a, double b) {
|
---|
74 | return maximization && a > b
|
---|
75 | || !maximization && a < b;
|
---|
76 | }
|
---|
77 |
|
---|
78 | public static Tuple<int, int> Search(IRandom random, BinaryVector solution, ref double quality, bool maximization, Func<BinaryVector, IRandom, double> evalFunc, CancellationToken token, bool[] subspace = null) {
|
---|
79 | if (double.IsNaN(quality)) quality = evalFunc(solution, null);
|
---|
80 | var improved = false;
|
---|
81 | var order = Enumerable.Range(0, solution.Length).Shuffle(random).ToArray();
|
---|
82 | var lastImp = -1;
|
---|
83 | var steps = 0;
|
---|
84 | var evaluations = 0;
|
---|
85 | do {
|
---|
86 | improved = false;
|
---|
87 | for (var i = 0; i < solution.Length; i++) {
|
---|
88 | // in case we didn't make an improvement this round and arrived at the index of the last improvement
|
---|
89 | // break means we don't need to try the remaining moves again as they have brought no improvement
|
---|
90 | if (!improved && lastImp == i) break;
|
---|
91 | var idx = order[i];
|
---|
92 | if (subspace != null && !subspace[idx]) continue;
|
---|
93 | // bitflip the solution
|
---|
94 | solution[idx] = !solution[idx];
|
---|
95 | var after = evalFunc(solution, null);
|
---|
96 | evaluations++;
|
---|
97 | if (IsBetter(maximization, after, quality)) {
|
---|
98 | steps++;
|
---|
99 | quality = after;
|
---|
100 | lastImp = i;
|
---|
101 | improved = true;
|
---|
102 | } else {
|
---|
103 | // undo the bitflip in case no improvement was made
|
---|
104 | solution[idx] = !solution[idx];
|
---|
105 | }
|
---|
106 | token.ThrowIfCancellationRequested();
|
---|
107 | }
|
---|
108 | } while (improved);
|
---|
109 |
|
---|
110 | return Tuple.Create(evaluations, steps);
|
---|
111 | }
|
---|
112 | }
|
---|
113 | }
|
---|