#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * and the BEACON Center for the Study of Evolution in Action. * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Threading; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.BinaryVectorEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Random; namespace HeuristicLab.Algorithms.ParameterlessPopulationPyramid { // This code is based off the publication // B. W. Goldman and W. F. Punch, "Parameter-less Population Pyramid," GECCO, pp. 785–792, 2014 // and the original source code in C++11 available from: https://github.com/brianwgoldman/Parameter-less_Population_Pyramid [Item("Hill Climber (HC)", "Binary Hill Climber.")] [StorableClass] [Creatable(CreatableAttribute.Categories.SingleSolutionAlgorithms, Priority = 150)] public class HillClimber : BasicAlgorithm { [Storable] private IRandom random; private const string IterationsParameterName = "Iterations"; public override Type ProblemType { get { return typeof(ISingleObjectiveProblemDefinition); } } public new ISingleObjectiveProblemDefinition Problem { get { return (ISingleObjectiveProblemDefinition)base.Problem; } set { base.Problem = (IProblem)value; } } public IFixedValueParameter IterationsParameter { get { return (IFixedValueParameter)Parameters[IterationsParameterName]; } } public int Iterations { get { return IterationsParameter.Value.Value; } set { IterationsParameter.Value.Value = value; } } [StorableConstructor] protected HillClimber(bool deserializing) : base(deserializing) { } protected HillClimber(HillClimber original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new HillClimber(this, cloner); } public HillClimber() : base() { random = new MersenneTwister(); Parameters.Add(new FixedValueParameter(IterationsParameterName, "", new IntValue(100))); } protected override void Run(CancellationToken cancellationToken) { var BestQuality = new DoubleValue(double.NaN); Results.Add(new Result("Best quality", BestQuality)); for (int iteration = 0; iteration < Iterations; iteration++) { var solution = new BinaryVector(Problem.Encoding.Length); for (int i = 0; i < solution.Length; i++) { solution[i] = random.Next(2) == 1; } var fitness = Problem.Evaluate(solution, random); fitness = ImproveToLocalOptimum(Problem, solution, fitness, random); if (double.IsNaN(BestQuality.Value) || Problem.IsBetter(fitness, BestQuality.Value)) { BestQuality.Value = fitness; } } } // In the GECCO paper, Section 2.1 public static double ImproveToLocalOptimum(ISingleObjectiveProblemDefinition problem, BinaryVector solution, double fitness, IRandom rand) { var tried = new HashSet(); do { var options = Enumerable.Range(0, solution.Length).Shuffle(rand); foreach (var option in options) { if (tried.Contains(option)) continue; solution[option] = !solution[option]; double newFitness = problem.Evaluate(solution, rand); if (problem.IsBetter(newFitness, fitness)) { fitness = newFitness; tried.Clear(); } else { solution[option] = !solution[option]; } tried.Add(option); } } while (tried.Count != solution.Length); return fitness; } } }