#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; namespace HeuristicLab.Problems.Instances.Regression { public class UnwrappedBallFunctionFiveDimensional : ArtificialRegressionDataDescriptor { public override string Name { get { return "Vladislavleva UBall5D"; } } public override string Description { get { return "Paper: Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming " + Environment.NewLine + "Authors: Ekaterina J. Vladislavleva, Member, IEEE, Guido F. Smits, Member, IEEE, and Dick den Hertog" + Environment.NewLine + "Function: F4(X1, X2, X3, X4, X5) = 10 / (5 + Sum(Xi - 3)^2)" + Environment.NewLine + "Training Data: 1024 points Xi = Rand(0.05, 6.05)" + Environment.NewLine + "Test Data: 5000 points Xi = Rand(-0.25, 6.35)" + Environment.NewLine + "Function Set: +, -, *, /, sqaure, x^real, x + real, x + real"; } } protected override string TargetVariable { get { return "Y"; } } protected override string[] InputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "Y" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 1024; } } protected override int TestPartitionStart { get { return 1024; } } protected override int TestPartitionEnd { get { return 6024; } } protected override List> GenerateValues() { List> data = new List>(); for (int i = 0; i < AllowedInputVariables.Count(); i++) { data.Add(ValueGenerator.GenerateUniformDistributedValues(1024, 0.05, 6.05)); data[i].AddRange(ValueGenerator.GenerateUniformDistributedValues(5000, -0.25, 6.35)); } double x1, x2, x3, x4, x5; List results = new List(); for (int i = 0; i < data[0].Count; i++) { x1 = data[0][i]; x2 = data[1][i]; x3 = data[2][i]; x4 = data[3][i]; x5 = data[4][i]; results.Add(10 / (5 + Math.Pow(x1 - 3, 2) + Math.Pow(x2 - 3, 2) + Math.Pow(x3 - 3, 2) + Math.Pow(x4 - 3, 2) + Math.Pow(x5 - 3, 2))); } data.Add(results); return data; } } }