#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.Regression { public class ValueGenerator { protected static FastRandom rand = new FastRandom(); public static double[,] Transformation(List> data) { double[,] values = new double[data.First().Count, data.Count]; for (int i = 0; i < values.GetLength(0); i++) { for (int j = 0; j < values.GetLength(1); j++) { values[i, j] = data[j][i]; } } return values; } public static List GenerateSteps(double start, double end, double stepWidth) { return Enumerable.Range(0, (int)Math.Round(((end - start) / stepWidth) + 1)) .Select(i => (start + i * stepWidth)) .ToList(); } public static List GenerateUniformDistributedValues(int amount, double start, double end) { List values = new List(); for (int i = 0; i < amount; i++) { values.Add(rand.NextDouble() * (end - start) + start); } return values; } public static List GenerateNormalDistributedValues(int amount, double mu, double sigma) { List values = new List(); for (int i = 0; i < amount; i++) { values.Add(NormalDistributedRandom.NextDouble(rand, mu, sigma)); } return values; } public static List> GenerateAllCombinationsOfValuesInLists(List> sets) { var combinations = new List>(); foreach (var value in sets[0]) combinations.Add(new List { value }); foreach (var set in sets.Skip(1)) combinations = AddListToCombinations(combinations, set); combinations = (from i in Enumerable.Range(0, sets.Count) select (from list in combinations select list.ElementAt(i)).ToList()).ToList>(); return combinations; } private static List> AddListToCombinations (List> combinations, List set) { var newCombinations = from value in set from combination in combinations select new List(combination) { value }; return newCombinations.ToList(); } } }