#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.Instances;
namespace HeuristicLab.Problems.DataAnalysis {
[StorableClass]
[Item("Regression Problem", "A general regression problem.")]
[Creatable("Problems")]
public class RegressionProblem : DataAnalysisProblem, IRegressionProblem, IStorableContent,
IProblemInstanceConsumer, IProblemInstanceExporter, IProblemInstanceConsumer {
public string Filename { get; set; }
[StorableConstructor]
protected RegressionProblem(bool deserializing) : base(deserializing) { }
protected RegressionProblem(RegressionProblem original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) { return new RegressionProblem(this, cloner); }
public RegressionProblem()
: base() {
ProblemData = new RegressionProblemData();
}
public override void ImportProblemDataFromFile(string fileName) {
RegressionProblemData problemData = RegressionProblemData.ImportFromFile(fileName);
ProblemData = problemData;
}
public void Load(RegressionData data) {
Name = data.Name;
Description = data.Description;
Dataset dataset = new Dataset(data.InputVariables, data.Values);
ProblemData = new RegressionProblemData(dataset, data.AllowedInputVariables, data.TargetVariable);
ProblemData.TrainingPartition.Start = data.TrainingPartitionStart;
ProblemData.TrainingPartition.End = data.TrainingPartitionEnd;
ProblemData.TestPartition.Start = data.TestPartitionStart;
ProblemData.TestPartition.End = data.TestPartitionEnd;
OnReset();
}
public RegressionData Export() {
if (!ProblemData.InputVariables.Count.Equals(ProblemData.Dataset.DoubleVariables.Count()))
throw new ArgumentException("Not all input variables are double variables! (Export only works with double variables)");
RegressionData regData = new RegressionData();
regData.Name = Name;
regData.Description = Description;
regData.TargetVariable = ProblemData.TargetVariable;
regData.InputVariables = ProblemData.InputVariables.Select(x => x.Value).ToArray();
regData.AllowedInputVariables = ProblemData.AllowedInputVariables.ToArray();
regData.TrainingPartitionStart = ProblemData.TrainingPartition.Start;
regData.TrainingPartitionEnd = ProblemData.TrainingPartition.End;
regData.TestPartitionStart = ProblemData.TestPartition.Start;
regData.TestPartitionEnd = ProblemData.TestPartition.End;
List> data = new List>();
foreach (var variable in ProblemData.Dataset.DoubleVariables) {
data.Add(ProblemData.Dataset.GetDoubleValues(variable).ToList());
}
regData.Values = Transformer.Transformation(data);
return regData;
}
}
}