#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.Instances; namespace HeuristicLab.Problems.DataAnalysis { [StorableClass] [Item("Regression Problem", "A general regression problem.")] [Creatable("Problems")] public class RegressionProblem : DataAnalysisProblem, IRegressionProblem, IStorableContent, IProblemInstanceConsumer, IProblemInstanceExporter, IProblemInstanceConsumer { public string Filename { get; set; } [StorableConstructor] protected RegressionProblem(bool deserializing) : base(deserializing) { } protected RegressionProblem(RegressionProblem original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new RegressionProblem(this, cloner); } public RegressionProblem() : base() { ProblemData = new RegressionProblemData(); } public override void ImportProblemDataFromFile(string fileName) { RegressionProblemData problemData = RegressionProblemData.ImportFromFile(fileName); ProblemData = problemData; } public void Load(RegressionData data) { Name = data.Name; Description = data.Description; Dataset dataset = new Dataset(data.InputVariables, data.Values); ProblemData = new RegressionProblemData(dataset, data.AllowedInputVariables, data.TargetVariable); ProblemData.TrainingPartition.Start = data.TrainingPartitionStart; ProblemData.TrainingPartition.End = data.TrainingPartitionEnd; ProblemData.TestPartition.Start = data.TestPartitionStart; ProblemData.TestPartition.End = data.TestPartitionEnd; OnReset(); } public RegressionData Export() { if (!ProblemData.InputVariables.Count.Equals(ProblemData.Dataset.DoubleVariables.Count())) throw new ArgumentException("Not all input variables are double variables! (Export only works with double variables)"); RegressionData regData = new RegressionData(); regData.Name = Name; regData.Description = Description; regData.TargetVariable = ProblemData.TargetVariable; regData.InputVariables = ProblemData.InputVariables.Select(x => x.Value).ToArray(); regData.AllowedInputVariables = ProblemData.AllowedInputVariables.ToArray(); regData.TrainingPartitionStart = ProblemData.TrainingPartition.Start; regData.TrainingPartitionEnd = ProblemData.TrainingPartition.End; regData.TestPartitionStart = ProblemData.TestPartition.Start; regData.TestPartitionEnd = ProblemData.TestPartition.End; List> data = new List>(); foreach (var variable in ProblemData.Dataset.DoubleVariables) { data.Add(ProblemData.Dataset.GetDoubleValues(variable).ToList()); } regData.Values = Transformer.Transformation(data); return regData; } } }