#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.PermutationEncoding; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.PluginInfrastructure; namespace HeuristicLab.Problems.TravelingSalesman { // BackwardsCompatibility3.3 #region Backwards compatible code, remove with 3.4 /// /// An operator for analyzing the diversity of solutions of Traveling Salesman Problems given in path representation. /// [Obsolete] [NonDiscoverableType] [Item("TSPPopulationDiversityAnalyzer", "An operator for analyzing the diversity of solutions of Traveling Salesman Problems given in path representation.")] [StorableClass] public sealed class TSPPopulationDiversityAnalyzer : PopulationDiversityAnalyzer { [StorableConstructor] private TSPPopulationDiversityAnalyzer(bool deserializing) : base(deserializing) { } private TSPPopulationDiversityAnalyzer(TSPPopulationDiversityAnalyzer original, Cloner cloner) : base(original, cloner) { } public TSPPopulationDiversityAnalyzer() : base() { } public override IDeepCloneable Clone(Cloner cloner) { return new TSPPopulationDiversityAnalyzer(this, cloner); } protected override double[,] CalculateSimilarities(Permutation[] solutions) { int count = solutions.Length; double[,] similarities = new double[count, count]; int[][] edges = new int[count][]; for (int i = 0; i < count; i++) edges[i] = CalculateEdgesVector(solutions[i]); for (int i = 0; i < count; i++) { similarities[i, i] = 1; for (int j = i + 1; j < count; j++) { similarities[i, j] = CalculateSimilarity(edges[i], edges[j]); similarities[j, i] = similarities[i, j]; } } return similarities; } private int[] CalculateEdgesVector(Permutation permutation) { // transform path representation into adjacency representation int[] edgesVector = new int[permutation.Length]; for (int i = 0; i < permutation.Length - 1; i++) edgesVector[permutation[i]] = permutation[i + 1]; edgesVector[permutation[permutation.Length - 1]] = permutation[0]; return edgesVector; } private double CalculateSimilarity(int[] edgesA, int[] edgesB) { // calculate relative number of identical edges int identicalEdges = 0; for (int i = 0; i < edgesA.Length; i++) { if ((edgesA[i] == edgesB[i]) || (edgesA[edgesB[i]] == i)) identicalEdges++; } return ((double)identicalEdges) / edgesA.Length; } } #endregion }