#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis {
[StorableClass]
[Item("Constant TimeSeries Model", "A time series model that returns for all prediciton the same constant value.")]
[Obsolete]
public class ConstantTimeSeriesPrognosisModel : ConstantRegressionModel, ITimeSeriesPrognosisModel {
[StorableConstructor]
protected ConstantTimeSeriesPrognosisModel(bool deserializing) : base(deserializing) { }
protected ConstantTimeSeriesPrognosisModel(ConstantTimeSeriesPrognosisModel original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new ConstantTimeSeriesPrognosisModel(this, cloner);
}
public ConstantTimeSeriesPrognosisModel(double constant, string targetVariable) : base(constant, targetVariable) { }
public IEnumerable> GetPrognosedValues(IDataset dataset, IEnumerable rows, IEnumerable horizons) {
return horizons.Select(horizon => Enumerable.Repeat(Constant, horizon));
}
public ITimeSeriesPrognosisSolution CreateTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData) {
return new TimeSeriesPrognosisSolution(this, new TimeSeriesPrognosisProblemData(problemData));
}
}
}