#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis { [StorableClass] [Item("Constant TimeSeries Model", "A time series model that returns for all prediciton the same constant value.")] [Obsolete] public class ConstantTimeSeriesPrognosisModel : ConstantRegressionModel, ITimeSeriesPrognosisModel { [StorableConstructor] protected ConstantTimeSeriesPrognosisModel(bool deserializing) : base(deserializing) { } protected ConstantTimeSeriesPrognosisModel(ConstantTimeSeriesPrognosisModel original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new ConstantTimeSeriesPrognosisModel(this, cloner); } public ConstantTimeSeriesPrognosisModel(double constant, string targetVariable) : base(constant, targetVariable) { } public IEnumerable> GetPrognosedValues(IDataset dataset, IEnumerable rows, IEnumerable horizons) { return horizons.Select(horizon => Enumerable.Repeat(Constant, horizon)); } public ITimeSeriesPrognosisSolution CreateTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData) { return new TimeSeriesPrognosisSolution(this, new TimeSeriesPrognosisProblemData(problemData)); } } }