#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Windows.Forms; using HeuristicLab.Common; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Views; using HeuristicLab.MainForm.WindowsForms; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Views { public abstract partial class InteractiveSymbolicDataAnalysisSolutionSimplifierView : AsynchronousContentView { private Dictionary foldedNodes; private Dictionary changedNodes; private Dictionary nodeImpacts; private enum TreeState { Valid, Invalid } private TreeState treeState; protected InteractiveSymbolicDataAnalysisSolutionSimplifierView() { InitializeComponent(); foldedNodes = new Dictionary(); changedNodes = new Dictionary(); nodeImpacts = new Dictionary(); this.Caption = "Interactive Solution Simplifier"; // initialize the tree modifier that will be used to perform edit operations over the tree treeChart.ModifyTree = Modify; } /// /// Remove, Replace or Insert subtrees /// /// The symbolic expression tree /// The insertion point (ie, the parent node who will receive a new child) /// The subtree to be replaced /// The replacement subtree /// Flag used to indicate if whole subtrees should be removed (default behavior), or just the subtree root private void Modify(ISymbolicExpressionTree tree, ISymbolicExpressionTreeNode parent, ISymbolicExpressionTreeNode oldChild, ISymbolicExpressionTreeNode newChild, bool removeSubtree = true) { if (oldChild == null && newChild == null) throw new ArgumentNullException("Cannot deduce operation type from the arguments. Please provide non null operands."); if (oldChild == null) { // insertion operation parent.AddSubtree(newChild); newChild.Parent = parent; } else if (newChild == null) { // removal operation parent.RemoveSubtree(parent.IndexOfSubtree(oldChild)); if (!removeSubtree) { for (int i = oldChild.SubtreeCount - 1; i >= 0; --i) { var subtree = oldChild.GetSubtree(i); oldChild.RemoveSubtree(i); parent.AddSubtree(subtree); } } } else { // replacement operation var replacementIndex = parent.IndexOfSubtree(oldChild); parent.RemoveSubtree(replacementIndex); parent.InsertSubtree(replacementIndex, newChild); newChild.Parent = parent; if (changedNodes.ContainsKey(oldChild)) { changedNodes.Add(newChild, changedNodes[oldChild]); // so that on double click the original node is restored changedNodes.Remove(oldChild); } else { changedNodes.Add(newChild, oldChild); } } treeState = IsValid(tree) ? TreeState.Valid : TreeState.Invalid; switch (treeState) { case TreeState.Valid: this.grpViewHost.Enabled = true; UpdateModel(Content.Model.SymbolicExpressionTree); break; case TreeState.Invalid: this.grpViewHost.Enabled = false; break; } } // the optimizer always assumes 2 children for multiplication and addition nodes // thus, we enforce that the tree stays valid so that the constant optimization won't throw an exception // by returning 2 as the minimum allowed arity for addition and multiplication symbols private readonly Func GetMinArity = symbol => { var min = symbol.MinimumArity; if (symbol is Multiplication || symbol is Division) return Math.Max(2, min); return min; }; private bool IsValid(ISymbolicExpressionTree tree) { treeChart.Tree = tree; treeChart.Repaint(); bool valid = !tree.IterateNodesPostfix().Any(node => node.SubtreeCount < GetMinArity(node.Symbol) || node.SubtreeCount > node.Symbol.MaximumArity); if (valid) { btnOptimizeConstants.Enabled = true; btnSimplify.Enabled = true; treeStatusValue.Visible = false; } else { btnOptimizeConstants.Enabled = false; btnSimplify.Enabled = false; treeStatusValue.Visible = true; } this.Refresh(); return valid; } public new ISymbolicDataAnalysisSolution Content { get { return (ISymbolicDataAnalysisSolution)base.Content; } set { base.Content = value; } } protected override void RegisterContentEvents() { base.RegisterContentEvents(); Content.ModelChanged += Content_Changed; Content.ProblemDataChanged += Content_Changed; treeChart.Repainted += treeChart_Repainted; } protected override void DeregisterContentEvents() { base.DeregisterContentEvents(); Content.ModelChanged -= Content_Changed; Content.ProblemDataChanged -= Content_Changed; treeChart.Repainted -= treeChart_Repainted; } private void Content_Changed(object sender, EventArgs e) { UpdateView(); } protected override void OnContentChanged() { base.OnContentChanged(); foldedNodes = new Dictionary(); UpdateView(); viewHost.Content = this.Content; } private void treeChart_Repainted(object sender, EventArgs e) { if (nodeImpacts != null && nodeImpacts.Count > 0) PaintNodeImpacts(); } private void UpdateView() { if (Content == null || Content.Model == null || Content.ProblemData == null) return; var tree = Content.Model.SymbolicExpressionTree; treeChart.Tree = tree.Root.SubtreeCount > 1 ? new SymbolicExpressionTree(tree.Root) : new SymbolicExpressionTree(tree.Root.GetSubtree(0).GetSubtree(0)); var impactAndReplacementValues = CalculateImpactAndReplacementValues(tree); var replacementValues = impactAndReplacementValues.ToDictionary(x => x.Key, x => x.Value.Item2); foreach (var pair in replacementValues.Where(pair => !(pair.Key is ConstantTreeNode))) { foldedNodes[pair.Key] = MakeConstantTreeNode(pair.Value); } nodeImpacts = impactAndReplacementValues.ToDictionary(x => x.Key, x => x.Value.Item1); PaintNodeImpacts(); } protected abstract Dictionary CalculateReplacementValues(ISymbolicExpressionTree tree); protected abstract Dictionary CalculateImpactValues(ISymbolicExpressionTree tree); protected abstract Dictionary> CalculateImpactAndReplacementValues(ISymbolicExpressionTree tree); protected abstract void UpdateModel(ISymbolicExpressionTree tree); private static ConstantTreeNode MakeConstantTreeNode(double value) { var constant = new Constant { MinValue = value - 1, MaxValue = value + 1 }; var constantTreeNode = (ConstantTreeNode)constant.CreateTreeNode(); constantTreeNode.Value = value; return constantTreeNode; } private void treeChart_SymbolicExpressionTreeNodeDoubleClicked(object sender, MouseEventArgs e) { if (treeState == TreeState.Invalid) return; var visualNode = (VisualTreeNode)sender; if (visualNode.Content == null) { throw new Exception("VisualNode content cannot be null."); } var symbExprTreeNode = (SymbolicExpressionTreeNode)visualNode.Content; var tree = Content.Model.SymbolicExpressionTree; var parent = symbExprTreeNode.Parent; int indexOfSubtree = parent.IndexOfSubtree(symbExprTreeNode); if (changedNodes.ContainsKey(symbExprTreeNode)) { // undo node change parent.RemoveSubtree(indexOfSubtree); var originalNode = changedNodes[symbExprTreeNode]; parent.InsertSubtree(indexOfSubtree, originalNode); changedNodes.Remove(symbExprTreeNode); } else if (foldedNodes.ContainsKey(symbExprTreeNode)) { // undo node folding SwitchNodeWithReplacementNode(parent, indexOfSubtree); } UpdateModel(tree); } private void SwitchNodeWithReplacementNode(ISymbolicExpressionTreeNode parent, int subTreeIndex) { ISymbolicExpressionTreeNode subTree = parent.GetSubtree(subTreeIndex); if (foldedNodes.ContainsKey(subTree)) { parent.RemoveSubtree(subTreeIndex); var replacementNode = foldedNodes[subTree]; parent.InsertSubtree(subTreeIndex, replacementNode); // exchange key and value foldedNodes.Remove(subTree); foldedNodes.Add(replacementNode, subTree); } } private void PaintNodeImpacts() { var impacts = nodeImpacts.Values; double max = impacts.Max(); double min = impacts.Min(); foreach (ISymbolicExpressionTreeNode treeNode in Content.Model.SymbolicExpressionTree.IterateNodesPostfix()) { VisualTreeNode visualTree = treeChart.GetVisualSymbolicExpressionTreeNode(treeNode); if (!(treeNode is ConstantTreeNode) && nodeImpacts.ContainsKey(treeNode)) { visualTree.ToolTip = visualTree.Content.ToString(); double impact = nodeImpacts[treeNode]; // impact = 0 if no change // impact < 0 if new solution is better // impact > 0 if new solution is worse if (impact < 0.0) { // min is guaranteed to be < 0 visualTree.FillColor = Color.FromArgb((int)(impact / min * 255), Color.Red); } else if (impact.IsAlmost(0.0)) { visualTree.FillColor = Color.White; } else { // max is guaranteed to be > 0 visualTree.FillColor = Color.FromArgb((int)(impact / max * 255), Color.Green); } visualTree.ToolTip += Environment.NewLine + "Node impact: " + impact; var constantReplacementNode = foldedNodes[treeNode] as ConstantTreeNode; if (constantReplacementNode != null) { visualTree.ToolTip += Environment.NewLine + "Replacement value: " + constantReplacementNode.Value; } } if (visualTree != null) if (changedNodes.ContainsKey(treeNode)) { visualTree.LineColor = Color.DodgerBlue; } else if (treeNode is ConstantTreeNode && foldedNodes.ContainsKey(treeNode)) { visualTree.LineColor = Color.DarkOrange; } } treeChart.RepaintNodes(); } private void btnSimplify_Click(object sender, EventArgs e) { var simplifier = new SymbolicDataAnalysisExpressionTreeSimplifier(); var simplifiedExpressionTree = simplifier.Simplify(Content.Model.SymbolicExpressionTree); UpdateModel(simplifiedExpressionTree); } protected abstract void btnOptimizeConstants_Click(object sender, EventArgs e); } }