#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Algorithms.DataAnalysis { [StorableClass] [Item(Name = "CovarianceSpectralMixture", Description = "The spectral mixture kernel described in Wilson A. G. and Adams R.P., Gaussian Process Kernels for Pattern Discovery and Exptrapolation, ICML 2013.")] public sealed class CovarianceSpectralMixture : ParameterizedNamedItem, ICovarianceFunction { public const string QParameterName = "Number of components (Q)"; public const string WeightParameterName = "Weight"; public const string FrequencyParameterName = "Component frequency (mu)"; public const string LengthScaleParameterName = "Length scale (nu)"; public IValueParameter QParameter { get { return (IValueParameter)Parameters[QParameterName]; } } public IValueParameter WeightParameter { get { return (IValueParameter)Parameters[WeightParameterName]; } } public IValueParameter FrequencyParameter { get { return (IValueParameter)Parameters[FrequencyParameterName]; } } public IValueParameter LengthScaleParameter { get { return (IValueParameter)Parameters[LengthScaleParameterName]; } } private bool HasFixedWeightParameter { get { return WeightParameter.Value != null; } } private bool HasFixedFrequencyParameter { get { return FrequencyParameter.Value != null; } } private bool HasFixedLengthScaleParameter { get { return LengthScaleParameter.Value != null; } } [StorableConstructor] private CovarianceSpectralMixture(bool deserializing) : base(deserializing) { } private CovarianceSpectralMixture(CovarianceSpectralMixture original, Cloner cloner) : base(original, cloner) { } public CovarianceSpectralMixture() : base() { Name = ItemName; Description = ItemDescription; Parameters.Add(new ValueParameter(QParameterName, "The number of Gaussians (Q) to use for the spectral mixture.", new IntValue(10))); Parameters.Add(new OptionalValueParameter(WeightParameterName, "The weight of the component w (peak height of the Gaussian in spectrum).")); Parameters.Add(new OptionalValueParameter(FrequencyParameterName, "The inverse component period parameter mu_q (location of the Gaussian in spectrum).")); Parameters.Add(new OptionalValueParameter(LengthScaleParameterName, "The length scale parameter (nu_q) (variance of the Gaussian in the spectrum).")); } public override IDeepCloneable Clone(Cloner cloner) { return new CovarianceSpectralMixture(this, cloner); } public int GetNumberOfParameters(int numberOfVariables) { var q = QParameter.Value.Value; return (HasFixedWeightParameter ? 0 : q) + (HasFixedFrequencyParameter ? 0 : q * numberOfVariables) + (HasFixedLengthScaleParameter ? 0 : q * numberOfVariables); } public void SetParameter(double[] p) { double[] weight, frequency, lengthScale; GetParameterValues(p, out weight, out frequency, out lengthScale); WeightParameter.Value = new DoubleArray(weight); FrequencyParameter.Value = new DoubleArray(frequency); LengthScaleParameter.Value = new DoubleArray(lengthScale); } private void GetParameterValues(double[] p, out double[] weight, out double[] frequency, out double[] lengthScale) { // gather parameter values int c = 0; int q = QParameter.Value.Value; // guess number of elements for frequency and length (=q * numberOfVariables) int n = WeightParameter.Value == null ? ((p.Length - q) / 2) : (p.Length / 2); if (HasFixedWeightParameter) { weight = WeightParameter.Value.ToArray(); } else { weight = p.Skip(c).Select(Math.Exp).Take(q).ToArray(); c += q; } if (HasFixedFrequencyParameter) { frequency = FrequencyParameter.Value.ToArray(); } else { frequency = p.Skip(c).Select(Math.Exp).Take(n).ToArray(); c += n; } if (HasFixedLengthScaleParameter) { lengthScale = LengthScaleParameter.Value.ToArray(); } else { lengthScale = p.Skip(c).Select(Math.Exp).Take(n).ToArray(); c += n; } if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceSpectralMixture", "p"); } public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) { double[] weight, frequency, lengthScale; GetParameterValues(p, out weight, out frequency, out lengthScale); var fixedWeight = HasFixedWeightParameter; var fixedFrequency = HasFixedFrequencyParameter; var fixedLengthScale = HasFixedLengthScaleParameter; // create functions var cov = new ParameterizedCovarianceFunction(); cov.Covariance = (x, i, j) => { return GetCovariance(x, x, i, j, QParameter.Value.Value, weight, frequency, lengthScale, columnIndices); }; cov.CrossCovariance = (x, xt, i, j) => { return GetCovariance(x, xt, i, j, QParameter.Value.Value, weight, frequency, lengthScale, columnIndices); }; cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, QParameter.Value.Value, weight, frequency, lengthScale, columnIndices, fixedWeight, fixedFrequency, fixedLengthScale); return cov; } private static double GetCovariance(double[,] x, double[,] xt, int i, int j, int maxQ, double[] weight, double[] frequency, double[] lengthScale, int[] columnIndices) { // tau = x - x' (only for selected variables) double[] tau = Util.GetRow(x, i, columnIndices).Zip(Util.GetRow(xt, j, columnIndices), (xi, xj) => xi - xj).ToArray(); int numberOfVariables = lengthScale.Length / maxQ; double k = 0; // for each component for (int q = 0; q < maxQ; q++) { double kc = weight[q]; // weighted kernel component int idx = 0; // helper index for tau // for each selected variable for (int c = 0; c < columnIndices.Length; c++) { var col = columnIndices[c]; kc *= f1(tau[idx], lengthScale[q * numberOfVariables + col]) * f2(tau[idx], frequency[q * numberOfVariables + col]); idx++; } k += kc; } return k; } public static double f1(double tau, double lengthScale) { return Math.Exp(-2 * Math.PI * Math.PI * tau * tau * lengthScale); } public static double f2(double tau, double frequency) { return Math.Cos(2 * Math.PI * tau * frequency); } // order of returned gradients must match the order in GetParameterValues! private static IList GetGradient(double[,] x, int i, int j, int maxQ, double[] weight, double[] frequency, double[] lengthScale, int[] columnIndices, bool fixedWeight, bool fixedFrequency, bool fixedLengthScale) { double[] tau = Util.GetRow(x, i, columnIndices).Zip(Util.GetRow(x, j, columnIndices), (xi, xj) => xi - xj).ToArray(); int numberOfVariables = lengthScale.Length / maxQ; var g = new List((!fixedWeight ? maxQ : 0) + (!fixedFrequency ? maxQ * columnIndices.Length : 0) + (!fixedLengthScale ? maxQ * columnIndices.Length : 0)); if (!fixedWeight) { // weight // for each component for (int q = 0; q < maxQ; q++) { double k = weight[q]; int idx = 0; // helper index for tau // for each selected variable for (int c = 0; c < columnIndices.Length; c++) { var col = columnIndices[c]; k *= f1(tau[idx], lengthScale[q * numberOfVariables + col]) * f2(tau[idx], frequency[q * numberOfVariables + col]); idx++; } g.Add(k); } } if (!fixedFrequency) { // frequency // for each component for (int q = 0; q < maxQ; q++) { int idx = 0; // helper index for tau // for each selected variable foreach (var c in columnIndices) { double k = f1(tau[idx], lengthScale[q * numberOfVariables + c]) * -2 * Math.PI * tau[idx] * frequency[q * numberOfVariables + c] * Math.Sin(2 * Math.PI * tau[idx] * frequency[q * numberOfVariables + c]); idx++; g.Add(weight[q] * k); } } } if (!fixedLengthScale) { // length scale // for each component for (int q = 0; q < maxQ; q++) { int idx = 0; // helper index for tau // for each selected variable foreach (var c in columnIndices) { double k = -2 * Math.PI * Math.PI * tau[idx] * tau[idx] * lengthScale[q * numberOfVariables + c] * f1(tau[idx], lengthScale[q * numberOfVariables + c]) * f2(tau[idx], frequency[q * numberOfVariables + c]); idx++; g.Add(weight[q] * k); } } } return g; } } }