#region License Information
/* HeuristicLab
* Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Analysis;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
///
/// Calculates the accumulated frequencies of variable-symbols over all trees in the population.
///
[Item("SymbolicDataAnalysisVariableFrequencyAnalyzer", "Calculates the accumulated frequencies of variable-symbols over all trees in the population.")]
[StorableClass]
public sealed class SymbolicDataAnalysisVariableFrequencyAnalyzer : SymbolicDataAnalysisAnalyzer {
private const string VariableFrequenciesParameterName = "VariableFrequencies";
private const string AggregateLaggedVariablesParameterName = "AggregateLaggedVariables";
private const string VariableImpactsParameterName = "VariableImpacts";
#region parameter properties
public ILookupParameter VariableFrequenciesParameter {
get { return (ILookupParameter)Parameters[VariableFrequenciesParameterName]; }
}
public ILookupParameter VariableImpactsParameter {
get { return (ILookupParameter)Parameters[VariableImpactsParameterName]; }
}
public IValueLookupParameter AggregateLaggedVariablesParameter {
get { return (IValueLookupParameter)Parameters[AggregateLaggedVariablesParameterName]; }
}
#endregion
#region properties
public BoolValue AggregateLaggedVariables {
get { return AggregateLaggedVariablesParameter.ActualValue; }
set { AggregateLaggedVariablesParameter.Value = value; }
}
#endregion
[StorableConstructor]
private SymbolicDataAnalysisVariableFrequencyAnalyzer(bool deserializing) : base(deserializing) { }
private SymbolicDataAnalysisVariableFrequencyAnalyzer(SymbolicDataAnalysisVariableFrequencyAnalyzer original, Cloner cloner)
: base(original, cloner) {
}
public SymbolicDataAnalysisVariableFrequencyAnalyzer()
: base() {
Parameters.Add(new LookupParameter(VariableFrequenciesParameterName, "The relative variable reference frequencies aggregated over all trees in the population."));
Parameters.Add(new LookupParameter(VariableImpactsParameterName, "The relative variable relevance calculated as the average relative variable frequency over the whole run."));
Parameters.Add(new ValueLookupParameter(AggregateLaggedVariablesParameterName, "Switch that determines whether all references to a variable should be aggregated regardless of time-offsets. Turn off to analyze all variable references with different time offsets separately.", new BoolValue(true)));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicDataAnalysisVariableFrequencyAnalyzer(this, cloner);
}
public override IOperation Apply() {
ItemArray expressions = SymbolicExpressionTreeParameter.ActualValue;
ResultCollection results = ResultCollection;
DoubleMatrix impacts;
DataTable datatable;
if (VariableFrequenciesParameter.ActualValue == null) {
datatable = new DataTable("Variable frequencies", "Relative frequency of variable references aggregated over the whole population.");
datatable.VisualProperties.XAxisTitle = "Generation";
datatable.VisualProperties.YAxisTitle = "Relative Variable Frequency";
impacts = new DoubleMatrix();
VariableFrequenciesParameter.ActualValue = datatable;
VariableImpactsParameter.ActualValue = impacts;
results.Add(new Result("Variable frequencies", "Relative frequency of variable references aggregated over the whole population.", datatable));
results.Add(new Result("Variable impacts", "The relative variable relevance calculated as the average relative variable frequency over the whole run.", impacts));
}
impacts = VariableImpactsParameter.ActualValue;
datatable = VariableFrequenciesParameter.ActualValue;
// all rows must have the same number of values so we can just take the first
int numberOfValues = datatable.Rows.Select(r => r.Values.Count).DefaultIfEmpty().First();
foreach (var pair in SymbolicDataAnalysisVariableFrequencyAnalyzer.CalculateVariableFrequencies(expressions, AggregateLaggedVariables.Value)) {
if (!datatable.Rows.ContainsKey(pair.Key)) {
// initialize a new row for the variable and pad with zeros
DataRow row = new DataRow(pair.Key, "", Enumerable.Repeat(0.0, numberOfValues));
row.VisualProperties.StartIndexZero = true;
datatable.Rows.Add(row);
}
datatable.Rows[pair.Key].Values.Add(pair.Value);
}
// add a zero for each data row that was not modified in the previous loop
foreach (var row in datatable.Rows.Where(r => r.Values.Count != numberOfValues + 1))
row.Values.Add(0.0);
// update variable impacts matrix
var orderedImpacts = (from row in datatable.Rows
select new { Name = row.Name, Impact = datatable.Rows[row.Name].Values.Average() })
.OrderByDescending(p => p.Impact)
.ToList();
var matrix = (IStringConvertibleMatrix)impacts;
matrix.Rows = orderedImpacts.Count;
matrix.RowNames = orderedImpacts.Select(x => x.Name);
matrix.Columns = 1;
matrix.ColumnNames = new string[] { "Relative variable relevance" };
int i = 0;
foreach (var p in orderedImpacts) {
matrix.SetValue(p.Impact.ToString(), i++, 0);
}
return base.Apply();
}
public static IEnumerable> CalculateVariableFrequencies(IEnumerable trees, bool aggregateLaggedVariables = true) {
Dictionary variableFrequencies = new Dictionary();
int totalNumberOfSymbols = 0;
foreach (var tree in trees) {
var variableReferences = GetVariableReferences(tree, aggregateLaggedVariables);
foreach (var pair in variableReferences) {
totalNumberOfSymbols += pair.Value;
if (variableFrequencies.ContainsKey(pair.Key)) {
variableFrequencies[pair.Key] += pair.Value;
} else {
variableFrequencies.Add(pair.Key, pair.Value);
}
}
}
foreach (var pair in variableFrequencies)
yield return new KeyValuePair(pair.Key, pair.Value / totalNumberOfSymbols);
}
private static IEnumerable> GetVariableReferences(ISymbolicExpressionTree tree, bool aggregateLaggedVariables = true) {
Dictionary references = new Dictionary();
if (aggregateLaggedVariables) {
tree.Root.ForEachNodePrefix(node => {
if (node.Symbol is Variable) {
var varNode = node as VariableTreeNode;
IncReferenceCount(references, varNode.VariableName);
} else if (node.Symbol is VariableCondition) {
var varCondNode = node as VariableConditionTreeNode;
IncReferenceCount(references, varCondNode.VariableName);
}
});
} else {
GetVariableReferences(references, tree.Root, 0);
}
return references;
}
private static void GetVariableReferences(Dictionary references, ISymbolicExpressionTreeNode node, int currentLag) {
if (node.Symbol is LaggedVariable) {
var laggedVarNode = node as LaggedVariableTreeNode;
IncReferenceCount(references, laggedVarNode.VariableName, currentLag + laggedVarNode.Lag);
} else if (node.Symbol is Variable) {
var varNode = node as VariableTreeNode;
IncReferenceCount(references, varNode.VariableName, currentLag);
} else if (node.Symbol is VariableCondition) {
var varCondNode = node as VariableConditionTreeNode;
IncReferenceCount(references, varCondNode.VariableName, currentLag);
GetVariableReferences(references, node.GetSubtree(0), currentLag);
GetVariableReferences(references, node.GetSubtree(1), currentLag);
} else if (node.Symbol is Integral) {
var laggedNode = node as LaggedTreeNode;
for (int l = laggedNode.Lag; l <= 0; l++) {
GetVariableReferences(references, node.GetSubtree(0), currentLag + l);
}
} else if (node.Symbol is Derivative) {
for (int l = -4; l <= 0; l++) {
GetVariableReferences(references, node.GetSubtree(0), currentLag + l);
}
} else if (node.Symbol is TimeLag) {
var laggedNode = node as LaggedTreeNode;
GetVariableReferences(references, node.GetSubtree(0), currentLag + laggedNode.Lag);
} else {
foreach (var subtree in node.Subtrees) {
GetVariableReferences(references, subtree, currentLag);
}
}
}
private static void IncReferenceCount(Dictionary references, string variableName, int timeLag = 0) {
string referenceId = variableName +
(timeLag == 0 ? "" : timeLag < 0 ? "(t" + timeLag + ")" : "(t+" + timeLag + ")");
if (references.ContainsKey(referenceId)) {
references[referenceId]++;
} else {
references[referenceId] = 1;
}
}
}
}