#region Copyright notice and license // Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // http://github.com/jskeet/dotnet-protobufs/ // Original C++/Java/Python code: // http://code.google.com/p/protobuf/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #endregion using System; using System.Collections.Generic; using System.IO; using System.Text; using Google.ProtocolBuffers.Descriptors; namespace Google.ProtocolBuffers { /// /// Readings and decodes protocol message fields. /// /// /// This class contains two kinds of methods: methods that read specific /// protocol message constructs and field types (e.g. ReadTag and /// ReadInt32) and methods that read low-level values (e.g. /// ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol /// messages, you should use the former methods, but if you are reading some /// other format of your own design, use the latter. The names of the former /// methods are taken from the protocol buffer type names, not .NET types. /// (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.) /// /// TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly, /// set at construction time. /// public sealed class CodedInputStream { private readonly byte[] buffer; private int bufferSize; private int bufferSizeAfterLimit = 0; private int bufferPos = 0; private readonly Stream input; private uint lastTag = 0; internal const int DefaultRecursionLimit = 64; internal const int DefaultSizeLimit = 64 << 20; // 64MB internal const int BufferSize = 4096; /// /// The total number of bytes read before the current buffer. The /// total bytes read up to the current position can be computed as /// totalBytesRetired + bufferPos. /// private int totalBytesRetired = 0; /// /// The absolute position of the end of the current message. /// private int currentLimit = int.MaxValue; /// /// /// private int recursionDepth = 0; private int recursionLimit = DefaultRecursionLimit; /// /// /// private int sizeLimit = DefaultSizeLimit; #region Construction /// /// Creates a new CodedInputStream reading data from the given /// stream. /// public static CodedInputStream CreateInstance(Stream input) { return new CodedInputStream(input); } /// /// Creates a new CodedInputStream reading data from the given /// byte array. /// public static CodedInputStream CreateInstance(byte[] buf) { return new CodedInputStream(buf); } private CodedInputStream(byte[] buffer) { this.buffer = buffer; this.bufferSize = buffer.Length; this.input = null; } private CodedInputStream(Stream input) { this.buffer = new byte[BufferSize]; this.bufferSize = 0; this.input = input; } #endregion #region Validation /// /// Verifies that the last call to ReadTag() returned the given tag value. /// This is used to verify that a nested group ended with the correct /// end tag. /// /// The last /// tag read was not the one specified [CLSCompliant(false)] public void CheckLastTagWas(uint value) { if (lastTag != value) { throw InvalidProtocolBufferException.InvalidEndTag(); } } #endregion #region Reading of tags etc /// /// Attempt to read a field tag, returning 0 if we have reached the end /// of the input data. Protocol message parsers use this to read tags, /// since a protocol message may legally end wherever a tag occurs, and /// zero is not a valid tag number. /// [CLSCompliant(false)] public uint ReadTag() { if (IsAtEnd) { lastTag = 0; return 0; } lastTag = ReadRawVarint32(); if (lastTag == 0) { // If we actually read zero, that's not a valid tag. throw InvalidProtocolBufferException.InvalidTag(); } return lastTag; } /// /// Read a double field from the stream. /// public double ReadDouble() { #if SILVERLIGHT2 || COMPACT_FRAMEWORK_35 byte[] bytes = ReadRawBytes(8); return BitConverter.ToDouble(bytes, 0); #else return BitConverter.Int64BitsToDouble((long) ReadRawLittleEndian64()); #endif } /// /// Read a float field from the stream. /// public float ReadFloat() { // TODO(jonskeet): Test this on different endiannesses uint raw = ReadRawLittleEndian32(); byte[] rawBytes = BitConverter.GetBytes(raw); return BitConverter.ToSingle(rawBytes, 0); } /// /// Read a uint64 field from the stream. /// [CLSCompliant(false)] public ulong ReadUInt64() { return ReadRawVarint64(); } /// /// Read an int64 field from the stream. /// public long ReadInt64() { return (long) ReadRawVarint64(); } /// /// Read an int32 field from the stream. /// public int ReadInt32() { return (int) ReadRawVarint32(); } /// /// Read a fixed64 field from the stream. /// [CLSCompliant(false)] public ulong ReadFixed64() { return ReadRawLittleEndian64(); } /// /// Read a fixed32 field from the stream. /// [CLSCompliant(false)] public uint ReadFixed32() { return ReadRawLittleEndian32(); } /// /// Read a bool field from the stream. /// public bool ReadBool() { return ReadRawVarint32() != 0; } /// /// Reads a string field from the stream. /// public String ReadString() { int size = (int) ReadRawVarint32(); // No need to read any data for an empty string. if (size == 0) { return ""; } if (size <= bufferSize - bufferPos) { // Fast path: We already have the bytes in a contiguous buffer, so // just copy directly from it. String result = Encoding.UTF8.GetString(buffer, bufferPos, size); bufferPos += size; return result; } // Slow path: Build a byte array first then copy it. return Encoding.UTF8.GetString(ReadRawBytes(size), 0, size); } /// /// Reads a group field value from the stream. /// public void ReadGroup(int fieldNumber, IBuilder builder, ExtensionRegistry extensionRegistry) { if (recursionDepth >= recursionLimit) { throw InvalidProtocolBufferException.RecursionLimitExceeded(); } ++recursionDepth; builder.WeakMergeFrom(this, extensionRegistry); CheckLastTagWas(WireFormat.MakeTag(fieldNumber, WireFormat.WireType.EndGroup)); --recursionDepth; } /// /// Reads a group field value from the stream and merges it into the given /// UnknownFieldSet. /// public void ReadUnknownGroup(int fieldNumber, UnknownFieldSet.Builder builder) { if (recursionDepth >= recursionLimit) { throw InvalidProtocolBufferException.RecursionLimitExceeded(); } ++recursionDepth; builder.MergeFrom(this); CheckLastTagWas(WireFormat.MakeTag(fieldNumber, WireFormat.WireType.EndGroup)); --recursionDepth; } /// /// Reads an embedded message field value from the stream. /// public void ReadMessage(IBuilder builder, ExtensionRegistry extensionRegistry) { int length = (int) ReadRawVarint32(); if (recursionDepth >= recursionLimit) { throw InvalidProtocolBufferException.RecursionLimitExceeded(); } int oldLimit = PushLimit(length); ++recursionDepth; builder.WeakMergeFrom(this, extensionRegistry); CheckLastTagWas(0); --recursionDepth; PopLimit(oldLimit); } /// /// Reads a bytes field value from the stream. /// public ByteString ReadBytes() { int size = (int) ReadRawVarint32(); if (size < bufferSize - bufferPos && size > 0) { // Fast path: We already have the bytes in a contiguous buffer, so // just copy directly from it. ByteString result = ByteString.CopyFrom(buffer, bufferPos, size); bufferPos += size; return result; } else { // Slow path: Build a byte array first then copy it. return ByteString.CopyFrom(ReadRawBytes(size)); } } /// /// Reads a uint32 field value from the stream. /// [CLSCompliant(false)] public uint ReadUInt32() { return ReadRawVarint32(); } /// /// Reads an enum field value from the stream. The caller is responsible /// for converting the numeric value to an actual enum. /// public int ReadEnum() { return (int) ReadRawVarint32(); } /// /// Reads an sfixed32 field value from the stream. /// public int ReadSFixed32() { return (int) ReadRawLittleEndian32(); } /// /// Reads an sfixed64 field value from the stream. /// public long ReadSFixed64() { return (long) ReadRawLittleEndian64(); } /// /// Reads an sint32 field value from the stream. /// public int ReadSInt32() { return DecodeZigZag32(ReadRawVarint32()); } /// /// Reads an sint64 field value from the stream. /// public long ReadSInt64() { return DecodeZigZag64(ReadRawVarint64()); } /// /// Reads a field of any primitive type. Enums, groups and embedded /// messages are not handled by this method. /// public object ReadPrimitiveField(FieldType fieldType) { switch (fieldType) { case FieldType.Double: return ReadDouble(); case FieldType.Float: return ReadFloat(); case FieldType.Int64: return ReadInt64(); case FieldType.UInt64: return ReadUInt64(); case FieldType.Int32: return ReadInt32(); case FieldType.Fixed64: return ReadFixed64(); case FieldType.Fixed32: return ReadFixed32(); case FieldType.Bool: return ReadBool(); case FieldType.String: return ReadString(); case FieldType.Bytes: return ReadBytes(); case FieldType.UInt32: return ReadUInt32(); case FieldType.SFixed32: return ReadSFixed32(); case FieldType.SFixed64: return ReadSFixed64(); case FieldType.SInt32: return ReadSInt32(); case FieldType.SInt64: return ReadSInt64(); case FieldType.Group: throw new ArgumentException("ReadPrimitiveField() cannot handle nested groups."); case FieldType.Message: throw new ArgumentException("ReadPrimitiveField() cannot handle embedded messages."); // We don't handle enums because we don't know what to do if the // value is not recognized. case FieldType.Enum: throw new ArgumentException("ReadPrimitiveField() cannot handle enums."); default: throw new ArgumentOutOfRangeException("Invalid field type " + fieldType); } } #endregion #region Underlying reading primitives /// /// Same code as ReadRawVarint32, but read each byte individually, checking for /// buffer overflow. /// private uint SlowReadRawVarint32() { int tmp = ReadRawByte(); if (tmp < 128) { return (uint)tmp; } int result = tmp & 0x7f; if ((tmp = ReadRawByte()) < 128) { result |= tmp << 7; } else { result |= (tmp & 0x7f) << 7; if ((tmp = ReadRawByte()) < 128) { result |= tmp << 14; } else { result |= (tmp & 0x7f) << 14; if ((tmp = ReadRawByte()) < 128) { result |= tmp << 21; } else { result |= (tmp & 0x7f) << 21; result |= (tmp = ReadRawByte()) << 28; if (tmp >= 128) { // Discard upper 32 bits. for (int i = 0; i < 5; i++) { if (ReadRawByte() < 128) return (uint)result; } throw InvalidProtocolBufferException.MalformedVarint(); } } } } return (uint)result; } /// /// Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits. /// This method is optimised for the case where we've got lots of data in the buffer. /// That means we can check the size just once, then just read directly from the buffer /// without constant rechecking of the buffer length. /// [CLSCompliant(false)] public uint ReadRawVarint32() { if (bufferPos + 5 > bufferSize) { return SlowReadRawVarint32(); } int tmp = buffer[bufferPos++]; if (tmp < 128) { return (uint)tmp; } int result = tmp & 0x7f; if ((tmp = buffer[bufferPos++]) < 128) { result |= tmp << 7; } else { result |= (tmp & 0x7f) << 7; if ((tmp = buffer[bufferPos++]) < 128) { result |= tmp << 14; } else { result |= (tmp & 0x7f) << 14; if ((tmp = buffer[bufferPos++]) < 128) { result |= tmp << 21; } else { result |= (tmp & 0x7f) << 21; result |= (tmp = buffer[bufferPos++]) << 28; if (tmp >= 128) { // Discard upper 32 bits. // Note that this has to use ReadRawByte() as we only ensure we've // got at least 5 bytes at the start of the method. This lets us // use the fast path in more cases, and we rarely hit this section of code. for (int i = 0; i < 5; i++) { if (ReadRawByte() < 128) return (uint)result; } throw InvalidProtocolBufferException.MalformedVarint(); } } } } return (uint)result; } /// /// Reads a varint from the input one byte at a time, so that it does not /// read any bytes after the end of the varint. If you simply wrapped the /// stream in a CodedInputStream and used ReadRawVarint32(Stream)} /// then you would probably end up reading past the end of the varint since /// CodedInputStream buffers its input. /// /// /// internal static uint ReadRawVarint32(Stream input) { int result = 0; int offset = 0; for (; offset < 32; offset += 7) { int b = input.ReadByte(); if (b == -1) { throw InvalidProtocolBufferException.TruncatedMessage(); } result |= (b & 0x7f) << offset; if ((b & 0x80) == 0) { return (uint) result; } } // Keep reading up to 64 bits. for (; offset < 64; offset += 7) { int b = input.ReadByte(); if (b == -1) { throw InvalidProtocolBufferException.TruncatedMessage(); } if ((b & 0x80) == 0) { return (uint) result; } } throw InvalidProtocolBufferException.MalformedVarint(); } /// /// Read a raw varint from the stream. /// [CLSCompliant(false)] public ulong ReadRawVarint64() { int shift = 0; ulong result = 0; while (shift < 64) { byte b = ReadRawByte(); result |= (ulong)(b & 0x7F) << shift; if ((b & 0x80) == 0) { return result; } shift += 7; } throw InvalidProtocolBufferException.MalformedVarint(); } /// /// Read a 32-bit little-endian integer from the stream. /// [CLSCompliant(false)] public uint ReadRawLittleEndian32() { uint b1 = ReadRawByte(); uint b2 = ReadRawByte(); uint b3 = ReadRawByte(); uint b4 = ReadRawByte(); return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24); } /// /// Read a 64-bit little-endian integer from the stream. /// [CLSCompliant(false)] public ulong ReadRawLittleEndian64() { ulong b1 = ReadRawByte(); ulong b2 = ReadRawByte(); ulong b3 = ReadRawByte(); ulong b4 = ReadRawByte(); ulong b5 = ReadRawByte(); ulong b6 = ReadRawByte(); ulong b7 = ReadRawByte(); ulong b8 = ReadRawByte(); return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24) | (b5 << 32) | (b6 << 40) | (b7 << 48) | (b8 << 56); } #endregion /// /// Decode a 32-bit value with ZigZag encoding. /// /// /// ZigZag encodes signed integers into values that can be efficiently /// encoded with varint. (Otherwise, negative values must be /// sign-extended to 64 bits to be varint encoded, thus always taking /// 10 bytes on the wire.) /// [CLSCompliant(false)] public static int DecodeZigZag32(uint n) { return (int)(n >> 1) ^ -(int)(n & 1); } /// /// Decode a 32-bit value with ZigZag encoding. /// /// /// ZigZag encodes signed integers into values that can be efficiently /// encoded with varint. (Otherwise, negative values must be /// sign-extended to 64 bits to be varint encoded, thus always taking /// 10 bytes on the wire.) /// [CLSCompliant(false)] public static long DecodeZigZag64(ulong n) { return (long)(n >> 1) ^ -(long)(n & 1); } /// /// Set the maximum message recursion depth. /// /// /// In order to prevent malicious /// messages from causing stack overflows, CodedInputStream limits /// how deeply messages may be nested. The default limit is 64. /// public int SetRecursionLimit(int limit) { if (limit < 0) { throw new ArgumentOutOfRangeException("Recursion limit cannot be negative: " + limit); } int oldLimit = recursionLimit; recursionLimit = limit; return oldLimit; } /// /// Set the maximum message size. /// /// /// In order to prevent malicious messages from exhausting memory or /// causing integer overflows, CodedInputStream limits how large a message may be. /// The default limit is 64MB. You should set this limit as small /// as you can without harming your app's functionality. Note that /// size limits only apply when reading from an InputStream, not /// when constructed around a raw byte array (nor with ByteString.NewCodedInput). /// If you want to read several messages from a single CodedInputStream, you /// can call ResetSizeCounter() after each message to avoid hitting the /// size limit. /// public int SetSizeLimit(int limit) { if (limit < 0) { throw new ArgumentOutOfRangeException("Size limit cannot be negative: " + limit); } int oldLimit = sizeLimit; sizeLimit = limit; return oldLimit; } #region Internal reading and buffer management /// /// Resets the current size counter to zero (see SetSizeLimit). /// public void ResetSizeCounter() { totalBytesRetired = 0; } /// /// Sets currentLimit to (current position) + byteLimit. This is called /// when descending into a length-delimited embedded message. The previous /// limit is returned. /// /// The old limit. public int PushLimit(int byteLimit) { if (byteLimit < 0) { throw InvalidProtocolBufferException.NegativeSize(); } byteLimit += totalBytesRetired + bufferPos; int oldLimit = currentLimit; if (byteLimit > oldLimit) { throw InvalidProtocolBufferException.TruncatedMessage(); } currentLimit = byteLimit; RecomputeBufferSizeAfterLimit(); return oldLimit; } private void RecomputeBufferSizeAfterLimit() { bufferSize += bufferSizeAfterLimit; int bufferEnd = totalBytesRetired + bufferSize; if (bufferEnd > currentLimit) { // Limit is in current buffer. bufferSizeAfterLimit = bufferEnd - currentLimit; bufferSize -= bufferSizeAfterLimit; } else { bufferSizeAfterLimit = 0; } } /// /// Discards the current limit, returning the previous limit. /// public void PopLimit(int oldLimit) { currentLimit = oldLimit; RecomputeBufferSizeAfterLimit(); } /// /// Returns whether or not all the data before the limit has been read. /// /// public bool ReachedLimit { get { if (currentLimit == int.MaxValue) { return false; } int currentAbsolutePosition = totalBytesRetired + bufferPos; return currentAbsolutePosition >= currentLimit; } } /// /// Returns true if the stream has reached the end of the input. This is the /// case if either the end of the underlying input source has been reached or /// the stream has reached a limit created using PushLimit. /// public bool IsAtEnd { get { return bufferPos == bufferSize && !RefillBuffer(false); } } /// /// Called when buffer is empty to read more bytes from the /// input. If is true, RefillBuffer() gurantees that /// either there will be at least one byte in the buffer when it returns /// or it will throw an exception. If is false, /// RefillBuffer() returns false if no more bytes were available. /// /// /// private bool RefillBuffer(bool mustSucceed) { if (bufferPos < bufferSize) { throw new InvalidOperationException("RefillBuffer() called when buffer wasn't empty."); } if (totalBytesRetired + bufferSize == currentLimit) { // Oops, we hit a limit. if (mustSucceed) { throw InvalidProtocolBufferException.TruncatedMessage(); } else { return false; } } totalBytesRetired += bufferSize; bufferPos = 0; bufferSize = (input == null) ? 0 : input.Read(buffer, 0, buffer.Length); if (bufferSize < 0) { throw new InvalidOperationException("Stream.Read returned a negative count"); } if (bufferSize == 0) { if (mustSucceed) { throw InvalidProtocolBufferException.TruncatedMessage(); } else { return false; } } else { RecomputeBufferSizeAfterLimit(); int totalBytesRead = totalBytesRetired + bufferSize + bufferSizeAfterLimit; if (totalBytesRead > sizeLimit || totalBytesRead < 0) { throw InvalidProtocolBufferException.SizeLimitExceeded(); } return true; } } /// /// Read one byte from the input. /// /// /// the end of the stream or the current limit was reached /// public byte ReadRawByte() { if (bufferPos == bufferSize) { RefillBuffer(true); } return buffer[bufferPos++]; } /// /// Read a fixed size of bytes from the input. /// /// /// the end of the stream or the current limit was reached /// public byte[] ReadRawBytes(int size) { if (size < 0) { throw InvalidProtocolBufferException.NegativeSize(); } if (totalBytesRetired + bufferPos + size > currentLimit) { // Read to the end of the stream anyway. SkipRawBytes(currentLimit - totalBytesRetired - bufferPos); // Then fail. throw InvalidProtocolBufferException.TruncatedMessage(); } if (size <= bufferSize - bufferPos) { // We have all the bytes we need already. byte[] bytes = new byte[size]; Array.Copy(buffer, bufferPos, bytes, 0, size); bufferPos += size; return bytes; } else if (size < BufferSize) { // Reading more bytes than are in the buffer, but not an excessive number // of bytes. We can safely allocate the resulting array ahead of time. // First copy what we have. byte[] bytes = new byte[size]; int pos = bufferSize - bufferPos; Array.Copy(buffer, bufferPos, bytes, 0, pos); bufferPos = bufferSize; // We want to use RefillBuffer() and then copy from the buffer into our // byte array rather than reading directly into our byte array because // the input may be unbuffered. RefillBuffer(true); while (size - pos > bufferSize) { Array.Copy(buffer, 0, bytes, pos, bufferSize); pos += bufferSize; bufferPos = bufferSize; RefillBuffer(true); } Array.Copy(buffer, 0, bytes, pos, size - pos); bufferPos = size - pos; return bytes; } else { // The size is very large. For security reasons, we can't allocate the // entire byte array yet. The size comes directly from the input, so a // maliciously-crafted message could provide a bogus very large size in // order to trick the app into allocating a lot of memory. We avoid this // by allocating and reading only a small chunk at a time, so that the // malicious message must actually *be* extremely large to cause // problems. Meanwhile, we limit the allowed size of a message elsewhere. // Remember the buffer markers since we'll have to copy the bytes out of // it later. int originalBufferPos = bufferPos; int originalBufferSize = bufferSize; // Mark the current buffer consumed. totalBytesRetired += bufferSize; bufferPos = 0; bufferSize = 0; // Read all the rest of the bytes we need. int sizeLeft = size - (originalBufferSize - originalBufferPos); List chunks = new List(); while (sizeLeft > 0) { byte[] chunk = new byte[Math.Min(sizeLeft, BufferSize)]; int pos = 0; while (pos < chunk.Length) { int n = (input == null) ? -1 : input.Read(chunk, pos, chunk.Length - pos); if (n <= 0) { throw InvalidProtocolBufferException.TruncatedMessage(); } totalBytesRetired += n; pos += n; } sizeLeft -= chunk.Length; chunks.Add(chunk); } // OK, got everything. Now concatenate it all into one buffer. byte[] bytes = new byte[size]; // Start by copying the leftover bytes from this.buffer. int newPos = originalBufferSize - originalBufferPos; Array.Copy(buffer, originalBufferPos, bytes, 0, newPos); // And now all the chunks. foreach (byte[] chunk in chunks) { Array.Copy(chunk, 0, bytes, newPos, chunk.Length); newPos += chunk.Length; } // Done. return bytes; } } /// /// Reads and discards a single field, given its tag value. /// /// false if the tag is an end-group tag, in which case /// nothing is skipped. Otherwise, returns true. [CLSCompliant(false)] public bool SkipField(uint tag) { switch (WireFormat.GetTagWireType(tag)) { case WireFormat.WireType.Varint: ReadInt32(); return true; case WireFormat.WireType.Fixed64: ReadRawLittleEndian64(); return true; case WireFormat.WireType.LengthDelimited: SkipRawBytes((int) ReadRawVarint32()); return true; case WireFormat.WireType.StartGroup: SkipMessage(); CheckLastTagWas( WireFormat.MakeTag(WireFormat.GetTagFieldNumber(tag), WireFormat.WireType.EndGroup)); return true; case WireFormat.WireType.EndGroup: return false; case WireFormat.WireType.Fixed32: ReadRawLittleEndian32(); return true; default: throw InvalidProtocolBufferException.InvalidWireType(); } } /// /// Reads and discards an entire message. This will read either until EOF /// or until an endgroup tag, whichever comes first. /// public void SkipMessage() { while (true) { uint tag = ReadTag(); if (tag == 0 || !SkipField(tag)) { return; } } } /// /// Reads and discards bytes. /// /// the end of the stream /// or the current limit was reached public void SkipRawBytes(int size) { if (size < 0) { throw InvalidProtocolBufferException.NegativeSize(); } if (totalBytesRetired + bufferPos + size > currentLimit) { // Read to the end of the stream anyway. SkipRawBytes(currentLimit - totalBytesRetired - bufferPos); // Then fail. throw InvalidProtocolBufferException.TruncatedMessage(); } if (size <= bufferSize - bufferPos) { // We have all the bytes we need already. bufferPos += size; } else { // Skipping more bytes than are in the buffer. First skip what we have. int pos = bufferSize - bufferPos; totalBytesRetired += pos; bufferPos = 0; bufferSize = 0; // Then skip directly from the InputStream for the rest. if (pos < size) { if (input == null) { throw InvalidProtocolBufferException.TruncatedMessage(); } SkipImpl(size - pos); totalBytesRetired += size - pos; } } } /// /// Abstraction of skipping to cope with streams which can't really skip. /// private void SkipImpl(int amountToSkip) { if (input.CanSeek) { long previousPosition = input.Position; input.Position += amountToSkip; if (input.Position != previousPosition + amountToSkip) { throw InvalidProtocolBufferException.TruncatedMessage(); } } else { byte[] skipBuffer = new byte[1024]; while (amountToSkip > 0) { int bytesRead = input.Read(skipBuffer, 0, skipBuffer.Length); if (bytesRead <= 0) { throw InvalidProtocolBufferException.TruncatedMessage(); } amountToSkip -= bytesRead; } } } #endregion } }