#region License Information
/* HeuristicLab
* Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
using HeuristicLab.Parameters;
namespace HeuristicLab.Algorithms.DataAnalysis {
///
/// Nearest neighbour classification data analysis algorithm.
///
[Item("Nearest Neighbour Classification", "Nearest neighbour classification data analysis algorithm (wrapper for ALGLIB).")]
[Creatable("Data Analysis")]
[StorableClass]
public sealed class NearestNeighbourClassification : FixedDataAnalysisAlgorithm {
private const string KParameterName = "K";
private const string NearestNeighbourClassificationModelResultName = "Nearest neighbour classification solution";
#region parameter properties
public IFixedValueParameter KParameter {
get { return (IFixedValueParameter)Parameters[KParameterName]; }
}
#endregion
#region properties
public int K {
get { return KParameter.Value.Value; }
set {
if (value <= 0) throw new ArgumentException("K must be larger than zero.", "K");
else KParameter.Value.Value = value;
}
}
#endregion
[StorableConstructor]
private NearestNeighbourClassification(bool deserializing) : base(deserializing) { }
private NearestNeighbourClassification(NearestNeighbourClassification original, Cloner cloner)
: base(original, cloner) {
}
public NearestNeighbourClassification()
: base() {
Parameters.Add(new FixedValueParameter(KParameterName, "The number of nearest neighbours to consider for regression.", new IntValue(3)));
Problem = new ClassificationProblem();
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new NearestNeighbourClassification(this, cloner);
}
#region nearest neighbour
protected override void Run() {
var solution = CreateNearestNeighbourClassificationSolution(Problem.ProblemData, K);
Results.Add(new Result(NearestNeighbourClassificationModelResultName, "The nearest neighbour classification solution.", solution));
}
public static IClassificationSolution CreateNearestNeighbourClassificationSolution(IClassificationProblemData problemData, int k) {
Dataset dataset = problemData.Dataset;
string targetVariable = problemData.TargetVariable;
IEnumerable allowedInputVariables = problemData.AllowedInputVariables;
IEnumerable rows = problemData.TrainingIndizes;
double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows);
if (inputMatrix.Cast().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
throw new NotSupportedException("Nearest neighbour classification does not support NaN or infinity values in the input dataset.");
alglib.nearestneighbor.kdtree kdtree = new alglib.nearestneighbor.kdtree();
int nRows = inputMatrix.GetLength(0);
int nFeatures = inputMatrix.GetLength(1) - 1;
double[] classValues = dataset.GetDoubleValues(targetVariable).Distinct().OrderBy(x => x).ToArray();
int nClasses = classValues.Count();
// map original class values to values [0..nClasses-1]
Dictionary classIndizes = new Dictionary();
for (int i = 0; i < nClasses; i++) {
classIndizes[classValues[i]] = i;
}
for (int row = 0; row < nRows; row++) {
inputMatrix[row, nFeatures] = classIndizes[inputMatrix[row, nFeatures]];
}
alglib.nearestneighbor.kdtreebuild(inputMatrix, nRows, inputMatrix.GetLength(1) - 1, 1, 2, kdtree);
var problemDataClone = (IClassificationProblemData) problemData.Clone();
return new NearestNeighbourClassificationSolution(problemDataClone, new NearestNeighbourModel(kdtree, k, targetVariable, allowedInputVariables, problemDataClone.ClassValues.ToArray()));
}
#endregion
}
}