#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence; using HeuristicLab.Random; namespace HeuristicLab.ExpressionGenerator { /// /// Gamma distribution implemented after /// "A Simple Method for Generating Gamma Variables" - Marsaglia & Tsang /// ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000, Pages 363–372. /// [Item("GammaDistributedRandom", "A pseudo random number generator for gamma distributed random numbers.")] [StorableType("b8c87b51-c7d6-4831-a1d5-19d95074e8a3")] public sealed class GammaDistributedRandom : Item, IRandom { [Storable] private double shape; public double Shape { get { return shape; } set { shape = value; } } [Storable] private double rate; public double Rate { get { return rate; } set { rate = value; } } [Storable] private readonly IRandom random; public GammaDistributedRandom() { random = new MersenneTwister(); } public GammaDistributedRandom(IRandom random, double shape, double rate) { this.random = random; this.shape = shape; this.rate = rate; } [StorableConstructor] private GammaDistributedRandom(StorableConstructorFlag deserializing) : base(deserializing) { } private GammaDistributedRandom(GammaDistributedRandom original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new GammaDistributedRandom(this, cloner); } public void Reset() { random.Reset(); } public void Reset(int seed) { random.Reset(seed); } public int Next() { throw new NotImplementedException(); } public int Next(int maxVal) { throw new NotImplementedException(); } public int Next(int minVal, int maxVal) { throw new NotImplementedException(); } public double NextDouble() { return NextDouble(random, shape, rate); } /// /// Sample a value from a gamma distribution. /// Implementation of "A Simple Method for Generating Gamma Variables" - Marsaglia & Tsang /// ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000, Pages 363–372. /// /// A uniformly-distributed random number generator. /// The shape (k, α) of the Gamma distribution. Range: α ≥ 0. /// The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0. /// A sample from a Gamma distributed random variable. public static double NextDouble(IRandom uniformRandom, double shape, double rate) { if (double.IsPositiveInfinity(rate)) { return shape; } var a = 1d; if (shape < 1) { a = Math.Pow(uniformRandom.NextDouble(), 1 / shape); shape += 1; } var d = shape - 1d / 3d; var c = 1 / Math.Sqrt(9 * d); for (;;) { double v, x; do { x = NormalDistributedRandom.NextDouble(uniformRandom, 0, 1); v = 1 + c * x; } while (v <= 0); v = v * v * v; x = x * x; // save a multiplication below var u = uniformRandom.NextDouble(); if (u < 1 - 0.0331 * x * x || Math.Log(u) < 0.5 * x + d * (1 - v + Math.Log(v))) return a * d * v / rate; } } } }