#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.RealVectorEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence;
namespace HeuristicLab.Problems.TestFunctions {
///
/// The sphere function is a unimodal function that has its optimum at the origin.
/// It is implemented as described in Beyer, H.-G. and Schwefel, H.-P. 2002. Evolution Strategies - A Comprehensive Introduction Natural Computing, 1, pp. 3-52.
///
[Item("SphereEvaluator", "Evaluates the Sphere function y = C * ||X||^Alpha on a given point. The optimum of this function is 0 at the origin. It is implemented as described in Beyer, H.-G. and Schwefel, H.-P. 2002. Evolution Strategies - A Comprehensive Introduction Natural Computing, 1, pp. 3-52.")]
[StorableType("1f276120-8fc3-495a-868a-ac7bc41c3121")]
public class SphereEvaluator : SingleObjectiveTestFunctionProblemEvaluator {
public override string FunctionName { get { return "Sphere"; } }
///
/// Returns false as the Sphere function is a minimization problem.
///
public override bool Maximization {
get { return false; }
}
///
/// Gets the optimum function value (0).
///
public override double BestKnownQuality {
get { return 0; }
}
///
/// Gets the lower and upper bound of the function.
///
public override DoubleMatrix Bounds {
get { return new DoubleMatrix(new double[,] { { -5.12, 5.12 } }); }
}
///
/// Gets the minimum problem size (1).
///
public override int MinimumProblemSize {
get { return 1; }
}
///
/// Gets the (theoretical) maximum problem size (2^31 - 1).
///
public override int MaximumProblemSize {
get { return int.MaxValue; }
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SphereEvaluator(this, cloner);
}
public override RealVector GetBestKnownSolution(int dimension) {
return new RealVector(dimension);
}
///
/// The parameter C modifies the steepness of the objective function y = C * ||X||^Alpha. Default is C = 1.
///
public ValueParameter CParameter {
get { return (ValueParameter)Parameters["C"]; }
}
///
/// The parameter Alpha modifies the steepness of the objective function y = C * ||X||^Alpha. Default is Alpha = 2.
///
public ValueParameter AlphaParameter {
get { return (ValueParameter)Parameters["Alpha"]; }
}
///
/// The parameter C modifies the steepness of the objective function y = C * ||X||^Alpha. Default is C = 1.
///
public DoubleValue C {
get { return CParameter.Value; }
set { if (value != null) CParameter.Value = value; }
}
///
/// The parameter Alpha modifies the steepness of the objective function y = C * ||X||^Alpha. Default is Alpha = 2.
///
public DoubleValue Alpha {
get { return AlphaParameter.Value; }
set { if (value != null) AlphaParameter.Value = value; }
}
[StorableConstructor]
protected SphereEvaluator(StorableConstructorFlag deserializing) : base(deserializing) { }
protected SphereEvaluator(SphereEvaluator original, Cloner cloner) : base(original, cloner) { }
///
/// Initializes a new instance of the SphereEvaluator with two parameters (C and Alpha).
///
public SphereEvaluator()
: base() {
Parameters.Add(new ValueParameter("C", "The parameter C modifies the steepness of the objective function y = C * ||X||^Alpha. Default is C = 1.", new DoubleValue(1)));
Parameters.Add(new ValueParameter("Alpha", "The parameter Alpha modifies the steepness of the objective function y = C * ||X||^Alpha. Default is Alpha = 2.", new DoubleValue(2)));
}
///
/// Evaluates the test function for a specific .
///
/// N-dimensional point for which the test function should be evaluated.
/// The result value of the Sphere function at the given point.
public static double Apply(RealVector point, double c, double alpha) {
double result = 0;
for (int i = 0; i < point.Length; i++)
result += point[i] * point[i];
if (alpha != 2) result = Math.Pow(Math.Sqrt(result), alpha);
return c * result;
}
///
/// Evaluates the test function for a specific .
///
/// Calls .
/// N-dimensional point for which the test function should be evaluated.
/// The result value of the Sphere function at the given point.
public override double Evaluate(RealVector point) {
return Apply(point, C.Value, Alpha.Value);
}
}
}