#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.RealVectorEncoding; using HeuristicLab.Parameters; using HeuristicLab.Persistence; namespace HeuristicLab.Problems.TestFunctions { /// /// The generalized Rastrigin function y = Sum((x_i)^2 + A * (1 - Cos(2pi*x_i))) is a highly multimodal function that has its optimal value 0 at the origin. /// It is implemented as described in Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg. /// /// Returns false as the Rastrigin function is a minimization problem. /// public override bool Maximization { get { return false; } } /// /// Gets the optimum function value (0). /// public override double BestKnownQuality { get { return 0; } } /// /// Gets the lower and upper bound of the function. /// public override DoubleMatrix Bounds { get { return new DoubleMatrix(new double[,] { { -5.12, 5.12 } }); } } /// /// Gets the minimum problem size (1). /// public override int MinimumProblemSize { get { return 1; } } /// /// Gets the (theoretical) maximum problem size (2^31 - 1). /// public override int MaximumProblemSize { get { return int.MaxValue; } } /// /// The parameter A is a parameter of the objective function y = Sum((x_i)^2 + A * (1 - Cos(2pi*x_i))). Default is A = 10. /// public ValueParameter AParameter { get { return (ValueParameter)Parameters["A"]; } } /// /// The parameter A is a parameter of the objective function y = Sum((x_i)^2 + A * (1 - Cos(2pi*x_i))). Default is A = 10. /// public DoubleValue A { get { return AParameter.Value; } set { if (value != null) AParameter.Value = value; } } public override RealVector GetBestKnownSolution(int dimension) { return new RealVector(dimension); } [StorableConstructor] protected RastriginEvaluator(StorableConstructorFlag deserializing) : base(deserializing) { } protected RastriginEvaluator(RastriginEvaluator original, Cloner cloner) : base(original, cloner) { } /// /// Initializes a new instance of the RastriginEvaluator with one parameter (A). /// public RastriginEvaluator() : base() { Parameters.Add(new ValueParameter("A", "The parameter A is a parameter of the objective function y = Sum((x_i)^2 + A * (1 - Cos(2pi*x_i))). Default is A = 10.", new DoubleValue(10))); } public override IDeepCloneable Clone(Cloner cloner) { return new RastriginEvaluator(this, cloner); } /// /// Evaluates the test function for a specific . /// /// N-dimensional point for which the test function should be evaluated. /// The result value of the Rastrigin function at the given point. public static double Apply(RealVector point, double a) { double result = a * point.Length; for (int i = 0; i < point.Length; i++) { result += point[i] * point[i]; result -= a * Math.Cos(2 * Math.PI * point[i]); } return (result); } /// /// Evaluates the test function for a specific . /// /// Calls . /// N-dimensional point for which the test function should be evaluated. /// The result value of the Rastrigin function at the given point. public override double Evaluate(RealVector point) { return Apply(point, A.Value); } } }