#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.RealVectorEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence; using HeuristicLab.Problems.Instances; namespace HeuristicLab.Problems.TestFunctions.MultiObjective { [StorableType("909609c5-759b-448a-a75e-ea3f39e7d146")] [Creatable(CreatableAttribute.Categories.Problems, Priority = 95)] [Item("Test Function (multi-objective)", "Test functions with real valued inputs and multiple objectives.")] public class MultiObjectiveTestFunctionProblem : MultiObjectiveBasicProblem, IProblemInstanceConsumer { #region Parameter Properties public IValueParameter MaximizationParameter { get { return (IValueParameter)Parameters["Maximization"]; } } public IFixedValueParameter ProblemSizeParameter { get { return (IFixedValueParameter)Parameters["ProblemSize"]; } } public IFixedValueParameter ObjectivesParameter { get { return (IFixedValueParameter)Parameters["Objectives"]; } } public IValueParameter BoundsParameter { get { return (IValueParameter)Parameters["Bounds"]; } } public IValueParameter TestFunctionParameter { get { return (IValueParameter)Parameters["TestFunction"]; } } public IValueParameter ReferencePointParameter { get { return (IValueParameter)Parameters["ReferencePoint"]; } } public OptionalValueParameter BestKnownFrontParameter { get { return (OptionalValueParameter)Parameters["BestKnownFront"]; } } #endregion #region Properties public override bool[] Maximization { get { if (!Parameters.ContainsKey("Maximization")) return new bool[2]; return MaximizationParameter.Value.ToArray(); } } public int ProblemSize { get { return ProblemSizeParameter.Value.Value; } set { ProblemSizeParameter.Value.Value = value; } } public int Objectives { get { return ObjectivesParameter.Value.Value; } set { ObjectivesParameter.Value.Value = value; } } public DoubleMatrix Bounds { get { return BoundsParameter.Value; } set { BoundsParameter.Value = value; } } public IMultiObjectiveTestFunction TestFunction { get { return TestFunctionParameter.Value; } set { TestFunctionParameter.Value = value; } } public DoubleArray ReferencePoint { get { return ReferencePointParameter.Value; } set { ReferencePointParameter.Value = value; } } public DoubleMatrix BestKnownFront { get { return BestKnownFrontParameter.Value; } set { BestKnownFrontParameter.Value = value; } } #endregion [StorableConstructor] protected MultiObjectiveTestFunctionProblem(StorableConstructorFlag deserializing) : base(deserializing) { } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { RegisterEventHandlers(); } protected MultiObjectiveTestFunctionProblem(MultiObjectiveTestFunctionProblem original, Cloner cloner) : base(original, cloner) { RegisterEventHandlers(); } public override IDeepCloneable Clone(Cloner cloner) { return new MultiObjectiveTestFunctionProblem(this, cloner); } public MultiObjectiveTestFunctionProblem() : base() { Parameters.Add(new FixedValueParameter("ProblemSize", "The dimensionality of the problem instance (number of variables in the function).", new IntValue(2))); Parameters.Add(new FixedValueParameter("Objectives", "The dimensionality of the solution vector (number of objectives).", new IntValue(2))); Parameters.Add(new ValueParameter("Bounds", "The bounds of the solution given as either one line for all variables or a line for each variable. The first column specifies lower bound, the second upper bound.", new DoubleMatrix(new double[,] { { -4, 4 } }))); Parameters.Add(new ValueParameter("ReferencePoint", "The reference point used for hypervolume calculation.")); Parameters.Add(new ValueParameter("TestFunction", "The function that is to be optimized.", new Fonseca())); Parameters.Add(new OptionalValueParameter("BestKnownFront", "The currently best known Pareto front")); Encoding.LengthParameter = ProblemSizeParameter; Encoding.BoundsParameter = BoundsParameter; BestKnownFrontParameter.Hidden = true; UpdateParameterValues(); InitializeOperators(); RegisterEventHandlers(); } private void RegisterEventHandlers() { TestFunctionParameter.ValueChanged += TestFunctionParameterOnValueChanged; ProblemSizeParameter.Value.ValueChanged += ProblemSizeOnValueChanged; ObjectivesParameter.Value.ValueChanged += ObjectivesOnValueChanged; } public override void Analyze(Individual[] individuals, double[][] qualities, ResultCollection results, IRandom random) { base.Analyze(individuals, qualities, results, random); if (results.ContainsKey("Pareto Front")) { ((DoubleMatrix)results["Pareto Front"].Value).SortableView = true; } } /// /// Checks whether a given solution violates the contraints of this function. /// /// /// a double array that holds the distances that describe how much every contraint is violated (0 is not violated). If the current TestFunction does not have constraints an array of length 0 is returned public double[] CheckContraints(RealVector individual) { var constrainedTestFunction = (IConstrainedTestFunction)TestFunction; if (constrainedTestFunction != null) { return constrainedTestFunction.CheckConstraints(individual, Objectives); } return new double[0]; } public double[] Evaluate(RealVector individual) { return TestFunction.Evaluate(individual, Objectives); } public override double[] Evaluate(Individual individual, IRandom random) { return Evaluate(individual.RealVector()); } public void Load(MOTFData data) { TestFunction = data.TestFunction; } #region Events private void UpdateParameterValues() { MaximizationParameter.Value = (BoolArray)new BoolArray(TestFunction.Maximization(Objectives)).AsReadOnly(); var front = TestFunction.OptimalParetoFront(Objectives); if (front != null) { BestKnownFrontParameter.Value = (DoubleMatrix)Utilities.ToMatrix(front).AsReadOnly(); } else BestKnownFrontParameter.Value = null; BoundsParameter.Value = new DoubleMatrix(TestFunction.Bounds(Objectives)); ReferencePointParameter.Value = new DoubleArray(TestFunction.ReferencePoint(Objectives)); } protected override void OnEncodingChanged() { base.OnEncodingChanged(); UpdateParameterValues(); ParameterizeAnalyzers(); } protected override void OnEvaluatorChanged() { base.OnEvaluatorChanged(); UpdateParameterValues(); ParameterizeAnalyzers(); } private void TestFunctionParameterOnValueChanged(object sender, EventArgs eventArgs) { ProblemSize = Math.Max(TestFunction.MinimumSolutionLength, Math.Min(ProblemSize, TestFunction.MaximumSolutionLength)); Objectives = Math.Max(TestFunction.MinimumObjectives, Math.Min(Objectives, TestFunction.MaximumObjectives)); ReferencePointParameter.ActualValue = new DoubleArray(TestFunction.ReferencePoint(Objectives)); ParameterizeAnalyzers(); UpdateParameterValues(); OnReset(); } private void ProblemSizeOnValueChanged(object sender, EventArgs eventArgs) { ProblemSize = Math.Min(TestFunction.MaximumSolutionLength, Math.Max(TestFunction.MinimumSolutionLength, ProblemSize)); UpdateParameterValues(); } private void ObjectivesOnValueChanged(object sender, EventArgs eventArgs) { Objectives = Math.Min(TestFunction.MaximumObjectives, Math.Max(TestFunction.MinimumObjectives, Objectives)); UpdateParameterValues(); } #endregion #region Helpers private void InitializeOperators() { Operators.Add(new CrowdingAnalyzer()); Operators.Add(new GenerationalDistanceAnalyzer()); Operators.Add(new InvertedGenerationalDistanceAnalyzer()); Operators.Add(new HypervolumeAnalyzer()); Operators.Add(new SpacingAnalyzer()); Operators.Add(new ScatterPlotAnalyzer()); ParameterizeAnalyzers(); } private IEnumerable Analyzers { get { return Operators.OfType(); } } private void ParameterizeAnalyzers() { foreach (var analyzer in Analyzers) { analyzer.ResultsParameter.ActualName = "Results"; analyzer.QualitiesParameter.ActualName = Evaluator.QualitiesParameter.ActualName; analyzer.TestFunctionParameter.ActualName = TestFunctionParameter.Name; analyzer.BestKnownFrontParameter.ActualName = BestKnownFrontParameter.Name; var crowdingAnalyzer = analyzer as CrowdingAnalyzer; if (crowdingAnalyzer != null) { crowdingAnalyzer.BoundsParameter.ActualName = BoundsParameter.Name; } var scatterPlotAnalyzer = analyzer as ScatterPlotAnalyzer; if (scatterPlotAnalyzer != null) { scatterPlotAnalyzer.IndividualsParameter.ActualName = Encoding.Name; } } } #endregion } }