#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence; namespace HeuristicLab.Problems.TestFunctions.MultiObjective { [StorableType("e7e181be-ba91-48c4-a4a0-f98fe2b2bd45")] [Item("InvertedGenerationalDistanceAnalyzer", "The inverted generational distance between the current and the best known front (see Multi-Objective Performance Metrics - Shodhganga for more information)")] public class InvertedGenerationalDistanceAnalyzer : MOTFAnalyzer { public override bool EnabledByDefault { get { return false; } } private IFixedValueParameter DampeningParameter { get { return (IFixedValueParameter)Parameters["Dampening"]; } } public double Dampening { get { return DampeningParameter.Value.Value; } set { DampeningParameter.Value.Value = value; } } public IResultParameter InvertedGenerationalDistanceResultParameter { get { return (IResultParameter)Parameters["Inverted Generational Distance"]; } } public InvertedGenerationalDistanceAnalyzer() { Parameters.Add(new FixedValueParameter("Dampening", "", new DoubleValue(1))); Parameters.Add(new ResultParameter("Inverted Generational Distance", "The genrational distance between the current front and the optimal front")); InvertedGenerationalDistanceResultParameter.DefaultValue = new DoubleValue(double.NaN); } [StorableConstructor] protected InvertedGenerationalDistanceAnalyzer(StorableConstructorFlag deserializing) : base(deserializing) { } protected InvertedGenerationalDistanceAnalyzer(InvertedGenerationalDistanceAnalyzer original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new InvertedGenerationalDistanceAnalyzer(this, cloner); } public override IOperation Apply() { var qualities = QualitiesParameter.ActualValue; var testFunction = TestFunctionParameter.ActualValue; int objectives = qualities[0].Length; var optimalfront = testFunction.OptimalParetoFront(objectives); if (optimalfront == null) return base.Apply(); var invertedGenerationalDistance = InvertedGenerationalDistance.Calculate(qualities.Select(q => q.ToArray()), optimalfront, DampeningParameter.Value.Value); InvertedGenerationalDistanceResultParameter.ActualValue.Value = invertedGenerationalDistance; return base.Apply(); } } }