#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.PermutationEncoding; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence; namespace HeuristicLab.Problems.PTSP { /// /// An operator for analyzing the best solution of probabilistic traveling salesman problems given in path representation. /// [Item("BestPTSPSolutionAnalyzer", "An operator for analyzing the best solution of Probabilistic Traveling Salesman Problems given in path representation using city coordinates.")] [StorableType("1e23f9b8-d29b-4461-9267-4ea2543c55c5")] public sealed class BestPTSPSolutionAnalyzer : SingleSuccessorOperator, IAnalyzer, ISingleObjectiveOperator { public bool EnabledByDefault { get { return true; } } public ILookupParameter MaximizationParameter { get { return (ILookupParameter)Parameters["Maximization"]; } } public ILookupParameter CoordinatesParameter { get { return (ILookupParameter)Parameters["Coordinates"]; } } public IScopeTreeLookupParameter PermutationParameter { get { return (IScopeTreeLookupParameter)Parameters["Permutation"]; } } public IScopeTreeLookupParameter QualityParameter { get { return (IScopeTreeLookupParameter)Parameters["Quality"]; } } public ILookupParameter ProbabilitiesParameter { get { return (ILookupParameter)Parameters["Probabilities"]; } } public ILookupParameter BestSolutionParameter { get { return (ILookupParameter)Parameters["BestSolution"]; } } public IValueLookupParameter ResultsParameter { get { return (IValueLookupParameter)Parameters["Results"]; } } public ILookupParameter BestKnownQualityParameter { get { return (ILookupParameter)Parameters["BestKnownQuality"]; } } public ILookupParameter BestKnownSolutionParameter { get { return (ILookupParameter)Parameters["BestKnownSolution"]; } } [StorableConstructor] private BestPTSPSolutionAnalyzer(StorableConstructorFlag deserializing) : base(deserializing) { } private BestPTSPSolutionAnalyzer(BestPTSPSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new BestPTSPSolutionAnalyzer(this, cloner); } public BestPTSPSolutionAnalyzer() : base() { Parameters.Add(new LookupParameter("Maximization", "True if the problem is a maximization problem.")); Parameters.Add(new LookupParameter("Coordinates", "The x- and y-Coordinates of the cities.")); Parameters.Add(new ScopeTreeLookupParameter("Permutation", "The PTSP solutions given in path representation from which the best solution should be analyzed.")); Parameters.Add(new ScopeTreeLookupParameter("Quality", "The qualities of the PTSP solutions which should be analyzed.")); Parameters.Add(new LookupParameter("Probabilities", "This list describes for each city the probability of appearing in a realized instance.")); Parameters.Add(new LookupParameter("BestSolution", "The best PTSP solution.")); Parameters.Add(new ValueLookupParameter("Results", "The result collection where the best PTSP solution should be stored.")); Parameters.Add(new LookupParameter("BestKnownQuality", "The quality of the best known solution of this PTSP instance.")); Parameters.Add(new LookupParameter("BestKnownSolution", "The best known solution of this PTSP instance.")); } public override IOperation Apply() { var coordinates = CoordinatesParameter.ActualValue; var permutations = PermutationParameter.ActualValue; var qualities = QualityParameter.ActualValue; var probabilities = ProbabilitiesParameter.ActualValue; var results = ResultsParameter.ActualValue; var max = MaximizationParameter.ActualValue.Value; var bestKnownQuality = BestKnownQualityParameter.ActualValue; var i = !max ? qualities.Select((x, index) => new { index, x.Value }).OrderBy(x => x.Value).First().index : qualities.Select((x, index) => new { index, x.Value }).OrderByDescending(x => x.Value).First().index; if (bestKnownQuality == null || max && qualities[i].Value > bestKnownQuality.Value || !max && qualities[i].Value < bestKnownQuality.Value) { BestKnownQualityParameter.ActualValue = new DoubleValue(qualities[i].Value); BestKnownSolutionParameter.ActualValue = (Permutation)permutations[i].Clone(); } var tour = BestSolutionParameter.ActualValue; if (tour == null) { tour = new PathPTSPTour(coordinates, probabilities, (Permutation)permutations[i].Clone(), new DoubleValue(qualities[i].Value)); BestSolutionParameter.ActualValue = tour; results.Add(new Result("Best PTSP Solution", tour)); } else { if (max && tour.Quality.Value < qualities[i].Value || !max && tour.Quality.Value > qualities[i].Value) { tour.Coordinates = coordinates; tour.Permutation = (Permutation)permutations[i].Clone(); tour.Quality.Value = qualities[i].Value; } } return base.Apply(); } } }