#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.IntegerVectorEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence;
namespace HeuristicLab.Problems.Orienteering {
///
/// The used neighborhood operator is based on a two point exchange move. A move in
/// the k-th neighborhood consists of removing k consecutive vertices from the tour, starting
/// at a randomly selected position. Afterwards, a sorted list of all vertices not yet included
/// in the current tour is built. The vertices are sorted in descending order with respect to the
/// objective value increase using the current weights. Out of the first three entries with the
/// highest ranking in this list, one randomly selected vertex is reinserted into the current tour
/// at the same position as the removed vertices. This way, l new vertices are inserted into the
/// tour. The largest neighborhood is a complete exchange of all vertices on the tour.
/// The shaking procedure does not guarantee that the new tour does not exceed the cost
/// limit Tmax. Therefore, in a repair step, a sorted list of all vertices in the tour is created. The
/// vertices are sorted in descending order with respect to costs saved when removing the vertex
/// from the tour. Vertices are removed as long as the cost limit is violated.
/// (Schilde et. al. 2009)
///
[Item("OrienteeringShakingOperator", @"Implements the shaking procedure described in Schilde M., Doerner K.F., Hartl R.F., Kiechle G. 2009. Metaheuristics for the bi-objective orienteering problem. Swarm Intelligence, Volume 3, Issue 3, pp 179-201.")]
[StorableType("0f624eb9-cdc7-4109-96c6-1a306532ca54")]
public sealed class OrienteeringShakingOperator : SingleSuccessorOperator, IMultiNeighborhoodShakingOperator, IStochasticOperator {
#region Shaking Parameter Properties
public IValueLookupParameter CurrentNeighborhoodIndexParameter {
get { return (IValueLookupParameter)Parameters["CurrentNeighborhoodIndex"]; }
}
public ILookupParameter NeighborhoodCountParameter {
get { return (ILookupParameter)Parameters["NeighborhoodCount"]; }
}
#endregion
#region Parameter Properties
public ILookupParameter IntegerVectorParameter {
get { return (ILookupParameter)Parameters["IntegerVector"]; }
}
public ILookupParameter MaximumDistanceParameter {
get { return (ILookupParameter)Parameters["MaximumDistance"]; }
}
public ILookupParameter StartingPointParameter {
get { return (ILookupParameter)Parameters["StartingPoint"]; }
}
public ILookupParameter TerminalPointParameter {
get { return (ILookupParameter)Parameters["TerminalPoint"]; }
}
public ILookupParameter DistanceMatrixParameter {
get { return (ILookupParameter)Parameters["DistanceMatrix"]; }
}
public ILookupParameter ScoresParameter {
get { return (ILookupParameter)Parameters["Scores"]; }
}
public ILookupParameter PointVisitingCostsParameter {
get { return (ILookupParameter)Parameters["PointVisitingCosts"]; }
}
public ILookupParameter RandomParameter {
get { return (ILookupParameter)Parameters["Random"]; }
}
#endregion
[StorableConstructor]
private OrienteeringShakingOperator(StorableConstructorFlag deserializing) : base(deserializing) { }
private OrienteeringShakingOperator(OrienteeringShakingOperator original, Cloner cloner)
: base(original, cloner) {
}
public OrienteeringShakingOperator()
: base() {
Parameters.Add(new ValueLookupParameter("CurrentNeighborhoodIndex", "The index of the operator that should be applied (k)."));
Parameters.Add(new LookupParameter("NeighborhoodCount", "The number of operators that are available."));
Parameters.Add(new LookupParameter("IntegerVector", "The Orienteering Solution given in path representation."));
Parameters.Add(new LookupParameter("MaximumDistance", "The maximum distance constraint for a Orienteering solution."));
Parameters.Add(new LookupParameter("StartingPoint", "Index of the starting point."));
Parameters.Add(new LookupParameter("TerminalPoint", "Index of the ending point."));
Parameters.Add(new LookupParameter("DistanceMatrix", "The matrix which contains the distances between the points."));
Parameters.Add(new LookupParameter("Scores", "The scores of the points."));
Parameters.Add(new LookupParameter("PointVisitingCosts", "The costs for visiting a point."));
Parameters.Add(new LookupParameter("Random", "The random number generator that will be used."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new OrienteeringShakingOperator(this, cloner);
}
public override IOperation Apply() {
var initialTour = IntegerVectorParameter.ActualValue;
var distances = DistanceMatrixParameter.ActualValue;
var scores = ScoresParameter.ActualValue;
var startingPoint = StartingPointParameter.ActualValue.Value;
var terminalPoint = TerminalPointParameter.ActualValue.Value;
var pointVisitingCosts = PointVisitingCostsParameter.ActualValue.Value;
double maxDistance = MaximumDistanceParameter.ActualValue.Value;
int numPoints = scores.Length;
if (NeighborhoodCountParameter.ActualValue == null)
NeighborhoodCountParameter.ActualValue = new IntValue(initialTour.Length);
else NeighborhoodCountParameter.ActualValue.Value = initialTour.Length;
var random = RandomParameter.ActualValue;
if (initialTour.Length > 2) {
// Limit the neighborhood to the tour length
int currentNeighborhood = CurrentNeighborhoodIndexParameter.ActualValue.Value + 1;
int maximumNeighborhood = initialTour.Length - 2; // neighborhood limit within [0, changable tour length - 1)
maximumNeighborhood = (maximumNeighborhood > currentNeighborhood) ? currentNeighborhood : maximumNeighborhood;
int neighborhood = maximumNeighborhood;
// Find all points that are not yet included in the tour and are
// within the maximum distance allowed (ellipse)
// and sort them with regard to their utility
var visitablePoints = (
from point in Enumerable.Range(0, numPoints)
// Calculate the distance when going from the starting point to this point and then to the end point
let distance = distances[startingPoint, point] + distances[point, terminalPoint] + pointVisitingCosts
// If this distance is feasible and the point is neither starting nor ending point, check the point
where distance < maxDistance && point != startingPoint && point != terminalPoint
// The point was not yet visited, so add it to the candidate list
where !initialTour.Contains(point)
// Calculate the utility of the point at this position
let utility = scores[point]
orderby utility
select point
).ToList();
// Initialize the new tour
var actualTour = new List { startingPoint };
// Perform the insertions according to the utility sorting
InsertPoints(actualTour, initialTour, neighborhood, visitablePoints, random);
// Bring the tour back to be feasible
CleanupTour(actualTour, distances, maxDistance, pointVisitingCosts);
// Set new Tour
IntegerVectorParameter.ActualValue = new IntegerVector(actualTour.ToArray());
}
return base.Apply();
}
private void InsertPoints(List actualTour, IntegerVector initialTour,
int neighborhood, List visitablePoints, IRandom random) {
// Elect the starting index of the part to be replaced
int tourSize = initialTour.Length;
int randomPosition = random.Next(tourSize - neighborhood - 1) + 1;
for (int position = 1; position < tourSize; position++) {
if ((position < randomPosition) || (position > (randomPosition + neighborhood - 1))) {
// Copy from initial tour when outside shaking range
actualTour.Add(initialTour[position]);
// Delete this point from the candidate list
visitablePoints.Remove(initialTour[position]);
} else {
// Point from within shaking range
if (visitablePoints.Count > 0) {
// Add the point with the highest utility from the candidate list
int randomFactor = random.Next(3);
int insertionIndex = visitablePoints.Count - 1;
if (visitablePoints.Count > 4) insertionIndex -= randomFactor;
actualTour.Add(visitablePoints[insertionIndex]);
// Delete this point from the candidate list
visitablePoints.RemoveAt(insertionIndex);
} else {
// We don't have any points left that could be inserted so we can only re-insert
// the removed and not already re-inserted points in a random order
for (int reinsertPosition = randomPosition; reinsertPosition < randomPosition + neighborhood; reinsertPosition++) {
bool alreadyReinserted = actualTour.Contains(initialTour[reinsertPosition]);
if (!alreadyReinserted)
visitablePoints.Add(initialTour[reinsertPosition]);
}
int randomIndex = random.Next(visitablePoints.Count);
actualTour.Add(visitablePoints[randomIndex]);
visitablePoints.Clear();
}
}
}
}
private void CleanupTour(List actualTour, DistanceMatrix distances, double maxDistance, double pointVisitingCosts) {
// Sort the points on the tour according to their costs savings when removed
var distanceSavings = (
from removePosition in Enumerable.Range(1, actualTour.Count - 2)
let saving = distances.CalculateRemovementSaving(actualTour, removePosition, pointVisitingCosts)
orderby saving descending
select new SavingInfo { Index = removePosition, Saving = saving }
).ToList();
double tourLength = distances.CalculateTourLength(actualTour, pointVisitingCosts);
// As long as the created path is infeasible, remove elements
while (tourLength > maxDistance) {
// Remove the point that frees the largest distance
// Note, distance savings are not updated after removal
tourLength -= distances.CalculateRemovementSaving(actualTour, distanceSavings[0].Index, pointVisitingCosts);
actualTour.RemoveAt(distanceSavings[0].Index);
// Shift indices due to removal of a point in the tour
for (int i = 1; i < distanceSavings.Count; i++) {
if (distanceSavings[i].Index > distanceSavings[0].Index) {
distanceSavings[i].Index--;
}
}
distanceSavings.RemoveAt(0);
}
}
private class SavingInfo {
public int Index;
public double Saving;
}
}
}