#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Diagnostics.Contracts; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence; namespace HeuristicLab.Problems.GeneticProgramming.ArtificialAnt { [Item("Artificial Ant Problem", "Represents the Artificial Ant problem.")] [Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 170)] [StorableType("ecb1831f-a9c7-4944-a6cc-ce2f175849c4")] public sealed class Problem : SymbolicExpressionTreeProblem, IStorableContent { #region constant for default world (Santa Fe) private static readonly char[][] santaFeAntTrail = new[] { " ### ".ToCharArray(), " # ".ToCharArray(), " # .###.. ".ToCharArray(), " # # # ".ToCharArray(), " # # # ".ToCharArray(), " ####.##### .##.. . ".ToCharArray(), " # . # ".ToCharArray(), " # # . ".ToCharArray(), " # # . ".ToCharArray(), " # # # ".ToCharArray(), " . # . ".ToCharArray(), " # . . ".ToCharArray(), " # . # ".ToCharArray(), " # # . ".ToCharArray(), " # # ...###. ".ToCharArray(), " . .#... # ".ToCharArray(), " . . . ".ToCharArray(), " # . . ".ToCharArray(), " # # .#... ".ToCharArray(), " # # # ".ToCharArray(), " # # . ".ToCharArray(), " # # . ".ToCharArray(), " # . ...#. ".ToCharArray(), " # . # ".ToCharArray(), " ..##..#####. # ".ToCharArray(), " # # ".ToCharArray(), " # # ".ToCharArray(), " # .#######.. ".ToCharArray(), " # # ".ToCharArray(), " . # ".ToCharArray(), " .####.. ".ToCharArray(), " ".ToCharArray() }; #endregion #region Parameter Properties public IValueParameter WorldParameter { get { return (IValueParameter)Parameters["World"]; } } public IValueParameter MaxTimeStepsParameter { get { return (IValueParameter)Parameters["MaximumTimeSteps"]; } } #endregion #region Properties public BoolMatrix World { get { return WorldParameter.Value; } set { WorldParameter.Value = value; } } public IntValue MaxTimeSteps { get { return MaxTimeStepsParameter.Value; } set { MaxTimeStepsParameter.Value = value; } } #endregion public override bool Maximization { get { return true; } } #region item cloning and persistence // persistence [StorableConstructor] private Problem(StorableConstructorFlag deserializing) : base(deserializing) { } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { } // cloning private Problem(Problem original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new Problem(this, cloner); } #endregion public Problem() : base() { BoolMatrix world = new BoolMatrix(ToBoolMatrix(santaFeAntTrail)); Parameters.Add(new ValueParameter("World", "The world for the artificial ant with scattered food items.", world)); Parameters.Add(new ValueParameter("MaximumTimeSteps", "The number of time steps the artificial ant has available to collect all food items.", new IntValue(600))); base.BestKnownQuality = 89; var g = new SimpleSymbolicExpressionGrammar(); g.AddSymbols(new string[] { "IfFoodAhead", "Prog2" }, 2, 2); g.AddSymbols(new string[] { "Prog3" }, 3, 3); g.AddTerminalSymbols(new string[] { "Move", "Left", "Right" }); base.Encoding = new SymbolicExpressionTreeEncoding(g, 20, 10); } public override double Evaluate(ISymbolicExpressionTree tree, IRandom random) { var interpreter = new Interpreter(tree, World, MaxTimeSteps.Value); interpreter.Run(); return interpreter.FoodEaten; } public override void Analyze(ISymbolicExpressionTree[] trees, double[] qualities, ResultCollection results, IRandom random) { const string bestSolutionResultName = "Best Solution"; var bestQuality = Maximization ? qualities.Max() : qualities.Min(); var bestIdx = Array.IndexOf(qualities, bestQuality); if (!results.ContainsKey(bestSolutionResultName)) { results.Add(new Result(bestSolutionResultName, new Solution(World, trees[bestIdx], MaxTimeSteps.Value, qualities[bestIdx]))); } else if (((Solution)(results[bestSolutionResultName].Value)).Quality < qualities[bestIdx]) { results[bestSolutionResultName].Value = new Solution(World, trees[bestIdx], MaxTimeSteps.Value, qualities[bestIdx]); } } #region helpers private bool[,] ToBoolMatrix(char[][] ch) { var rows = ch.Length; var cols = ch[0].Length; var b = new bool[rows, cols]; for (int r = 0; r < rows; r++) { Contract.Assert(ch[r].Length == cols); // all rows must have the same number of columns for (int c = 0; c < cols; c++) { b[r, c] = ch[r][c] == '#'; } } return b; } #endregion } }