#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Persistence; namespace HeuristicLab.Problems.DataAnalysis.Symbolic { [StorableType("9001cb0d-0908-4128-95fa-a64515da7830")] [Item("SymbolicDataAnalysisSolutionImpactValuesCalculator", "Calculates the impact values and replacements values for symbolic expression tree nodes.")] public abstract class SymbolicDataAnalysisSolutionImpactValuesCalculator : Item, ISymbolicDataAnalysisSolutionImpactValuesCalculator { protected SymbolicDataAnalysisSolutionImpactValuesCalculator() { } protected SymbolicDataAnalysisSolutionImpactValuesCalculator(SymbolicDataAnalysisSolutionImpactValuesCalculator original, Cloner cloner) : base(original, cloner) { } [StorableConstructor] protected SymbolicDataAnalysisSolutionImpactValuesCalculator(bool deserializing) : base(deserializing) { } public abstract void CalculateImpactAndReplacementValues(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable rows, out double impactValue, out double replacementValue, out double newQualityForImpactsCalculation, double qualityForImpactsCalculation = double.NaN); protected IEnumerable CalculateReplacementValues(ISymbolicExpressionTreeNode node, ISymbolicExpressionTree sourceTree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IDataset dataset, IEnumerable rows) { //optimization: constant nodes return always the same value ConstantTreeNode constantNode = node as ConstantTreeNode; BinaryFactorVariableTreeNode binaryFactorNode = node as BinaryFactorVariableTreeNode; FactorVariableTreeNode factorNode = node as FactorVariableTreeNode; if (constantNode != null) { yield return constantNode.Value; } else if (binaryFactorNode != null) { // valid replacements are either all off or all on yield return 0; yield return 1; } else if (factorNode != null) { foreach (var w in factorNode.Weights) yield return w; yield return 0.0; } else { var rootSymbol = new ProgramRootSymbol().CreateTreeNode(); var startSymbol = new StartSymbol().CreateTreeNode(); rootSymbol.AddSubtree(startSymbol); startSymbol.AddSubtree((ISymbolicExpressionTreeNode)node.Clone()); var tempTree = new SymbolicExpressionTree(rootSymbol); // clone ADFs of source tree for (int i = 1; i < sourceTree.Root.SubtreeCount; i++) { tempTree.Root.AddSubtree((ISymbolicExpressionTreeNode)sourceTree.Root.GetSubtree(i).Clone()); } yield return interpreter.GetSymbolicExpressionTreeValues(tempTree, dataset, rows).Median(); yield return interpreter.GetSymbolicExpressionTreeValues(tempTree, dataset, rows).Average(); // TODO perf } } } }