#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Parameters; using HeuristicLab.Persistence; using HeuristicLab.Random; namespace HeuristicLab.Problems.DataAnalysis.Symbolic { [StorableType("a5460680-59af-43a0-9407-cadce588ebef")] public abstract class SymbolicDataAnalysisExpressionCrossover : SymbolicExpressionTreeCrossover, ISymbolicDataAnalysisExpressionCrossover where T : class, IDataAnalysisProblemData { private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter"; private const string ProblemDataParameterName = "ProblemData"; private const string EvaluatorParameterName = "Evaluator"; private const string EvaluationPartitionParameterName = "EvaluationPartition"; private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples"; private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength"; private const string MaximumSymbolicExpressionTreeDepthParameterName = "MaximumSymbolicExpressionTreeDepth"; #region Parameter properties public ILookupParameter SymbolicDataAnalysisTreeInterpreterParameter { get { return (ILookupParameter)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; } } public IValueLookupParameter ProblemDataParameter { get { return (IValueLookupParameter)Parameters[ProblemDataParameterName]; } } public ILookupParameter> EvaluatorParameter { get { return (ILookupParameter>)Parameters[EvaluatorParameterName]; } } public IValueLookupParameter EvaluationPartitionParameter { get { return (IValueLookupParameter)Parameters[EvaluationPartitionParameterName]; } } public IValueLookupParameter RelativeNumberOfEvaluatedSamplesParameter { get { return (IValueLookupParameter)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; } } public IValueLookupParameter MaximumSymbolicExpressionTreeLengthParameter { get { return (IValueLookupParameter)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; } } public IValueLookupParameter MaximumSymbolicExpressionTreeDepthParameter { get { return (IValueLookupParameter)Parameters[MaximumSymbolicExpressionTreeDepthParameterName]; } } #endregion #region Properties public IntValue MaximumSymbolicExpressionTreeLength { get { return MaximumSymbolicExpressionTreeLengthParameter.ActualValue; } } public IntValue MaximumSymbolicExpressionTreeDepth { get { return MaximumSymbolicExpressionTreeDepthParameter.ActualValue; } } #endregion [StorableConstructor] protected SymbolicDataAnalysisExpressionCrossover(StorableConstructorFlag deserializing) : base(deserializing) { } protected SymbolicDataAnalysisExpressionCrossover(SymbolicDataAnalysisExpressionCrossover original, Cloner cloner) : base(original, cloner) { } public SymbolicDataAnalysisExpressionCrossover() : base() { Parameters.Add(new LookupParameter(SymbolicDataAnalysisTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic data analysis tree.")); Parameters.Add(new LookupParameter>(EvaluatorParameterName, "The single objective solution evaluator")); Parameters.Add(new ValueLookupParameter(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated.")); Parameters.Add(new ValueLookupParameter(EvaluationPartitionParameterName, "The start index of the dataset partition on which the symbolic data analysis solution should be evaluated.")); Parameters.Add(new ValueLookupParameter(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.")); Parameters.Add(new ValueLookupParameter(MaximumSymbolicExpressionTreeDepthParameterName, "The maximum tree depth.")); Parameters.Add(new ValueLookupParameter(MaximumSymbolicExpressionTreeLengthParameterName, "The maximum tree length.")); EvaluatorParameter.Hidden = true; EvaluationPartitionParameter.Hidden = true; SymbolicDataAnalysisTreeInterpreterParameter.Hidden = true; ProblemDataParameter.Hidden = true; RelativeNumberOfEvaluatedSamplesParameter.Hidden = true; } /// /// Creates a SymbolicExpressionTreeNode reusing the root and start symbols (since they are expensive to create). /// /// /// /// /// /// protected static ISymbolicExpressionTree CreateTreeFromNode(IRandom random, ISymbolicExpressionTreeNode node, ISymbol rootSymbol, ISymbol startSymbol) { var rootNode = new SymbolicExpressionTreeTopLevelNode(rootSymbol); if (rootNode.HasLocalParameters) rootNode.ResetLocalParameters(random); var startNode = new SymbolicExpressionTreeTopLevelNode(startSymbol); if (startNode.HasLocalParameters) startNode.ResetLocalParameters(random); startNode.AddSubtree(node); rootNode.AddSubtree(startNode); return new SymbolicExpressionTree(rootNode); } protected IEnumerable GenerateRowsToEvaluate() { return GenerateRowsToEvaluate(RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value); } protected IEnumerable GenerateRowsToEvaluate(double percentageOfRows) { IEnumerable rows; int samplesStart = EvaluationPartitionParameter.ActualValue.Start; int samplesEnd = EvaluationPartitionParameter.ActualValue.End; int testPartitionStart = ProblemDataParameter.ActualValue.TestPartition.Start; int testPartitionEnd = ProblemDataParameter.ActualValue.TestPartition.End; if (samplesEnd < samplesStart) throw new ArgumentException("Start value is larger than end value."); if (percentageOfRows.IsAlmost(1.0)) rows = Enumerable.Range(samplesStart, samplesEnd - samplesStart); else { int seed = RandomParameter.ActualValue.Next(); int count = (int)((samplesEnd - samplesStart) * percentageOfRows); if (count == 0) count = 1; rows = RandomEnumerable.SampleRandomNumbers(seed, samplesStart, samplesEnd, count); } return rows.Where(i => i < testPartitionStart || testPartitionEnd <= i); } protected static void Swap(CutPoint crossoverPoint, ISymbolicExpressionTreeNode selectedBranch) { if (crossoverPoint.Child != null) { // manipulate the tree of parent0 in place // replace the branch in tree0 with the selected branch from tree1 crossoverPoint.Parent.RemoveSubtree(crossoverPoint.ChildIndex); if (selectedBranch != null) { crossoverPoint.Parent.InsertSubtree(crossoverPoint.ChildIndex, selectedBranch); } } else { // child is null (additional child should be added under the parent) if (selectedBranch != null) { crossoverPoint.Parent.AddSubtree(selectedBranch); } } } } }