[7476] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[14185] | 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[7476] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[7481] | 25 | using HeuristicLab.Common;
|
---|
[7476] | 26 | using HeuristicLab.Core;
|
---|
[7481] | 27 | using HeuristicLab.Data;
|
---|
[7476] | 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
[14927] | 30 | using HeuristicLab.Persistence;
|
---|
[7476] | 31 | using HeuristicLab.Random;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
[14927] | 34 | [StorableType("a5460680-59af-43a0-9407-cadce588ebef")]
|
---|
[7476] | 35 | public abstract class SymbolicDataAnalysisExpressionCrossover<T> : SymbolicExpressionTreeCrossover, ISymbolicDataAnalysisExpressionCrossover<T> where T : class, IDataAnalysisProblemData {
|
---|
| 36 | private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
| 37 | private const string ProblemDataParameterName = "ProblemData";
|
---|
| 38 | private const string EvaluatorParameterName = "Evaluator";
|
---|
[7506] | 39 | private const string EvaluationPartitionParameterName = "EvaluationPartition";
|
---|
[7476] | 40 | private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
|
---|
| 41 | private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength";
|
---|
| 42 | private const string MaximumSymbolicExpressionTreeDepthParameterName = "MaximumSymbolicExpressionTreeDepth";
|
---|
| 43 |
|
---|
| 44 | #region Parameter properties
|
---|
| 45 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
|
---|
| 46 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
|
---|
| 47 | }
|
---|
| 48 | public IValueLookupParameter<T> ProblemDataParameter {
|
---|
| 49 | get { return (IValueLookupParameter<T>)Parameters[ProblemDataParameterName]; }
|
---|
| 50 | }
|
---|
| 51 | public ILookupParameter<ISymbolicDataAnalysisSingleObjectiveEvaluator<T>> EvaluatorParameter {
|
---|
| 52 | get { return (ILookupParameter<ISymbolicDataAnalysisSingleObjectiveEvaluator<T>>)Parameters[EvaluatorParameterName]; }
|
---|
| 53 | }
|
---|
[7506] | 54 | public IValueLookupParameter<IntRange> EvaluationPartitionParameter {
|
---|
| 55 | get { return (IValueLookupParameter<IntRange>)Parameters[EvaluationPartitionParameterName]; }
|
---|
[7476] | 56 | }
|
---|
| 57 | public IValueLookupParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
|
---|
| 58 | get { return (IValueLookupParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
|
---|
| 59 | }
|
---|
| 60 | public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeLengthParameter {
|
---|
| 61 | get { return (IValueLookupParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; }
|
---|
| 62 | }
|
---|
| 63 | public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeDepthParameter {
|
---|
| 64 | get { return (IValueLookupParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeDepthParameterName]; }
|
---|
| 65 | }
|
---|
| 66 | #endregion
|
---|
| 67 |
|
---|
| 68 | #region Properties
|
---|
| 69 | public IntValue MaximumSymbolicExpressionTreeLength {
|
---|
| 70 | get { return MaximumSymbolicExpressionTreeLengthParameter.ActualValue; }
|
---|
| 71 | }
|
---|
| 72 | public IntValue MaximumSymbolicExpressionTreeDepth {
|
---|
| 73 | get { return MaximumSymbolicExpressionTreeDepthParameter.ActualValue; }
|
---|
| 74 | }
|
---|
| 75 | #endregion
|
---|
| 76 |
|
---|
| 77 | [StorableConstructor]
|
---|
[15018] | 78 | protected SymbolicDataAnalysisExpressionCrossover(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
[7476] | 79 | protected SymbolicDataAnalysisExpressionCrossover(SymbolicDataAnalysisExpressionCrossover<T> original, Cloner cloner)
|
---|
| 80 | : base(original, cloner) {
|
---|
| 81 | }
|
---|
| 82 | public SymbolicDataAnalysisExpressionCrossover()
|
---|
| 83 | : base() {
|
---|
| 84 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic data analysis tree."));
|
---|
| 85 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisSingleObjectiveEvaluator<T>>(EvaluatorParameterName, "The single objective solution evaluator"));
|
---|
| 86 | Parameters.Add(new ValueLookupParameter<T>(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated."));
|
---|
[7506] | 87 | Parameters.Add(new ValueLookupParameter<IntRange>(EvaluationPartitionParameterName, "The start index of the dataset partition on which the symbolic data analysis solution should be evaluated."));
|
---|
[7476] | 88 | Parameters.Add(new ValueLookupParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index."));
|
---|
| 89 | Parameters.Add(new ValueLookupParameter<IntValue>(MaximumSymbolicExpressionTreeDepthParameterName, "The maximum tree depth."));
|
---|
| 90 | Parameters.Add(new ValueLookupParameter<IntValue>(MaximumSymbolicExpressionTreeLengthParameterName, "The maximum tree length."));
|
---|
| 91 |
|
---|
| 92 | EvaluatorParameter.Hidden = true;
|
---|
[7506] | 93 | EvaluationPartitionParameter.Hidden = true;
|
---|
[7476] | 94 | SymbolicDataAnalysisTreeInterpreterParameter.Hidden = true;
|
---|
| 95 | ProblemDataParameter.Hidden = true;
|
---|
| 96 | RelativeNumberOfEvaluatedSamplesParameter.Hidden = true;
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 | /// <summary>
|
---|
| 100 | /// Creates a SymbolicExpressionTreeNode reusing the root and start symbols (since they are expensive to create).
|
---|
| 101 | /// </summary>
|
---|
| 102 | /// <param name="random"></param>
|
---|
| 103 | /// <param name="node"></param>
|
---|
| 104 | /// <param name="rootSymbol"></param>
|
---|
| 105 | /// <param name="startSymbol"></param>
|
---|
| 106 | /// <returns></returns>
|
---|
| 107 | protected static ISymbolicExpressionTree CreateTreeFromNode(IRandom random, ISymbolicExpressionTreeNode node, ISymbol rootSymbol, ISymbol startSymbol) {
|
---|
| 108 | var rootNode = new SymbolicExpressionTreeTopLevelNode(rootSymbol);
|
---|
| 109 | if (rootNode.HasLocalParameters) rootNode.ResetLocalParameters(random);
|
---|
| 110 |
|
---|
| 111 | var startNode = new SymbolicExpressionTreeTopLevelNode(startSymbol);
|
---|
| 112 | if (startNode.HasLocalParameters) startNode.ResetLocalParameters(random);
|
---|
| 113 |
|
---|
| 114 | startNode.AddSubtree(node);
|
---|
| 115 | rootNode.AddSubtree(startNode);
|
---|
| 116 |
|
---|
| 117 | return new SymbolicExpressionTree(rootNode);
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | protected IEnumerable<int> GenerateRowsToEvaluate() {
|
---|
| 121 | return GenerateRowsToEvaluate(RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value);
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 | protected IEnumerable<int> GenerateRowsToEvaluate(double percentageOfRows) {
|
---|
| 125 | IEnumerable<int> rows;
|
---|
[7506] | 126 | int samplesStart = EvaluationPartitionParameter.ActualValue.Start;
|
---|
| 127 | int samplesEnd = EvaluationPartitionParameter.ActualValue.End;
|
---|
[7476] | 128 | int testPartitionStart = ProblemDataParameter.ActualValue.TestPartition.Start;
|
---|
| 129 | int testPartitionEnd = ProblemDataParameter.ActualValue.TestPartition.End;
|
---|
| 130 |
|
---|
| 131 | if (samplesEnd < samplesStart) throw new ArgumentException("Start value is larger than end value.");
|
---|
| 132 |
|
---|
| 133 | if (percentageOfRows.IsAlmost(1.0))
|
---|
| 134 | rows = Enumerable.Range(samplesStart, samplesEnd - samplesStart);
|
---|
| 135 | else {
|
---|
| 136 | int seed = RandomParameter.ActualValue.Next();
|
---|
| 137 | int count = (int)((samplesEnd - samplesStart) * percentageOfRows);
|
---|
| 138 | if (count == 0) count = 1;
|
---|
| 139 | rows = RandomEnumerable.SampleRandomNumbers(seed, samplesStart, samplesEnd, count);
|
---|
| 140 | }
|
---|
| 141 |
|
---|
| 142 | return rows.Where(i => i < testPartitionStart || testPartitionEnd <= i);
|
---|
| 143 | }
|
---|
[7494] | 144 |
|
---|
| 145 | protected static void Swap(CutPoint crossoverPoint, ISymbolicExpressionTreeNode selectedBranch) {
|
---|
| 146 | if (crossoverPoint.Child != null) {
|
---|
| 147 | // manipulate the tree of parent0 in place
|
---|
| 148 | // replace the branch in tree0 with the selected branch from tree1
|
---|
| 149 | crossoverPoint.Parent.RemoveSubtree(crossoverPoint.ChildIndex);
|
---|
| 150 | if (selectedBranch != null) {
|
---|
| 151 | crossoverPoint.Parent.InsertSubtree(crossoverPoint.ChildIndex, selectedBranch);
|
---|
| 152 | }
|
---|
| 153 | } else {
|
---|
| 154 | // child is null (additional child should be added under the parent)
|
---|
| 155 | if (selectedBranch != null) {
|
---|
| 156 | crossoverPoint.Parent.AddSubtree(selectedBranch);
|
---|
| 157 | }
|
---|
| 158 | }
|
---|
| 159 | }
|
---|
[7476] | 160 | }
|
---|
| 161 | }
|
---|