#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Persistence; using HeuristicLab.Random; namespace HeuristicLab.Problems.DataAnalysis.Symbolic { [Item("ContextAwareCrossover", "An operator which deterministically choses the best insertion point for a randomly selected node:\n" + "- Take two parent individuals P0 and P1\n" + "- Randomly choose a node N from P1\n" + "- Test all crossover points from P0 to determine the best location for N to be inserted")] [StorableType("2c5c61e2-fe10-4955-b638-39cdebf933d0")] public sealed class SymbolicDataAnalysisExpressionContextAwareCrossover : SymbolicDataAnalysisExpressionCrossover where T : class, IDataAnalysisProblemData { [StorableConstructor] private SymbolicDataAnalysisExpressionContextAwareCrossover(bool deserializing) : base(deserializing) { } private SymbolicDataAnalysisExpressionContextAwareCrossover(SymbolicDataAnalysisExpressionCrossover original, Cloner cloner) : base(original, cloner) { } public SymbolicDataAnalysisExpressionContextAwareCrossover() : base() { name = "ContextAwareCrossover"; } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicDataAnalysisExpressionContextAwareCrossover(this, cloner); } public override ISymbolicExpressionTree Crossover(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) { if (this.ExecutionContext == null) throw new InvalidOperationException("ExecutionContext not set."); List rows = GenerateRowsToEvaluate().ToList(); T problemData = ProblemDataParameter.ActualValue; ISymbolicDataAnalysisSingleObjectiveEvaluator evaluator = EvaluatorParameter.ActualValue; return Cross(random, parent0, parent1, this.ExecutionContext, evaluator, problemData, rows, MaximumSymbolicExpressionTreeDepth.Value, MaximumSymbolicExpressionTreeLength.Value); } /// /// Takes two parent individuals P0 and P1. /// Randomly choose a node i from the second parent, then test all possible crossover points from the first parent to determine the best location for i to be inserted. /// public static ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1, IExecutionContext context, ISymbolicDataAnalysisSingleObjectiveEvaluator evaluator, T problemData, List rows, int maxDepth, int maxLength) { // randomly choose a node from the second parent var possibleChildren = new List(); parent1.Root.ForEachNodePostfix((n) => { if (n.Parent != null && n.Parent != parent1.Root) possibleChildren.Add(n); }); var selectedChild = possibleChildren.SampleRandom(random); var crossoverPoints = new List(); var qualities = new List>(); parent0.Root.ForEachNodePostfix((n) => { if (n.Parent != null && n.Parent != parent0.Root) { var totalDepth = parent0.Root.GetBranchLevel(n) + selectedChild.GetDepth(); var totalLength = parent0.Root.GetLength() - n.GetLength() + selectedChild.GetLength(); if (totalDepth <= maxDepth && totalLength <= maxLength) { var crossoverPoint = new CutPoint(n.Parent, n); if (crossoverPoint.IsMatchingPointType(selectedChild)) crossoverPoints.Add(crossoverPoint); } } }); if (crossoverPoints.Any()) { // this loop will perform two swap operations per each crossover point foreach (var crossoverPoint in crossoverPoints) { // save the old parent so we can restore it later var parent = selectedChild.Parent; // perform a swap and check the quality of the solution Swap(crossoverPoint, selectedChild); IExecutionContext childContext = new ExecutionContext(context, evaluator, context.Scope); double quality = evaluator.Evaluate(childContext, parent0, problemData, rows); qualities.Add(new Tuple(crossoverPoint, quality)); // restore the correct parent selectedChild.Parent = parent; // swap the replaced subtree back into the tree so that the structure is preserved Swap(crossoverPoint, crossoverPoint.Child); } qualities.Sort((a, b) => a.Item2.CompareTo(b.Item2)); // assuming this sorts the list in ascending order var crossoverPoint0 = evaluator.Maximization ? qualities.Last().Item1 : qualities.First().Item1; // swap the node that would create the best offspring // this last swap makes a total of (2 * crossoverPoints.Count() + 1) swap operations. Swap(crossoverPoint0, selectedChild); } return parent0; } } }